InicioActualidadQuédate ColmayorTalleres CálculoT2 Continuidad de Funciones

T2 Continuidad de Funciones

Determine si la función es continua en todo punto de su dominio, de no serlo indique los puntos en los que es discontinua.

$$ 1) f(x) = \left\{ \begin{array}{ll} \frac{x^2+x-6}{x+3} & \mathrm{si\ } x \neq -3 \\ \quad 1 & \mathrm{si\ } x = -3 \end{array} \right. $$ $$ 2) f(x) = \left\{ \begin{array}{ll} \frac{x^2-3x-4}{x-4} & \mathrm{si\ } x \neq 4 \\ \quad 2 & \mathrm{si\ } x = 4 \end{array} \right. $$ $$ 3) f(x) = \left\{ \begin{array}{ll} \frac{5}{x-4} & \mathrm{si\ } x \neq 4 \\ \:\:2 & \mathrm{si\ } x = 4 \end{array} \right. $$ $$ 4) f(x) = \left\{ \begin{array}{ll} \frac{1}{x+2} & \mathrm{si\ } x \neq -2 \\ \:\:0 & \mathrm{si\ } x = 2 \end{array} \right. $$ $$ 5) f(x) = \left\{ \begin{array}{ll} -1 & \mathrm{si\ } x < 0 \\ \:\:\: 0 & \mathrm{si\ } x = 0 \\ \sqrt{x} & \mathrm{si\ } x > 0 \end{array} \right. $$ $$ 6) f(x) = \left\{ \begin{array}{ll} x-1 & \mathrm{si\ } x < 1 \\ \:\:\:\: 1 & \mathrm{si\ } x = 1 \\ 1-x & \mathrm{si\ } x > 1 \end{array} \right. $$ $$ 7) g(t) = \left\{ \begin{array}{ll} t^2-4 & \mathrm{si\ } t < 2 \\ \:\:\: 4 & \mathrm{si\ } t = 2 \\ 4-t^2 & \mathrm{si\ } t > 2 \end{array} \right. $$ $$ 8) H(x) = \left\{ \begin{array}{ll} 6+x & \mathrm{si\ } \quad\: x \leq -2 \\ 2-x & \mathrm{si\ } -2 < x \leq 2\\ 2x-1 & \mathrm{si\ } \quad\: x > 2 \end{array} \right. $$ $$ 9) g(x) = \left\{ \begin{array}{ll} \frac{\left|x\right|}{x} & \mathrm{si\ } x\neq 0 \\ \:1 & \mathrm{si\ } x = 0 \end{array} \right. $$ $$ 10) f(x) = \left\{ \begin{array}{ll} 3x-1 & \mathrm{si\ } x < 2 \\ 4-x^2 & \mathrm{si\ } x \geq 2 \end{array} \right. $$ $$ 11) f(x) = \left\{ \begin{array}{ll} (x+2)^2 & \mathrm{si\ } x \leq 0 \\ x^2+2 & \mathrm{si\ } x > 0 \end{array} \right. $$
$$ 12) f(x) = \left\{ \begin{array}{ll} \frac{1}{x+1} & \mathrm{si\ } x \leq 1 \\ \frac{1}{3-x} & \mathrm{si\ } x > 1 \end{array} \right. $$ $$ 13) f(x) = \left\{ \begin{array}{ll} \:\frac{1}{x} & \mathrm{si\ } x < 3 \\ \frac{2}{9-x} & \mathrm{si\ } x \geq 3 \end{array} \right. $$ $$ 14) f(x) = \left\{ \begin{array}{ll} \frac{1}{x} & \mathrm{si\ } x < 3 \\ \frac{2}{9-x} & \mathrm{si\ } x \geq 3 \end{array} \right. $$ $$ 15) f(x) = \left\{ \begin{array}{ll} x+\sqrt[3]{x} & \mathrm{si\ } x < 0 \\ x-\sqrt{x} & \mathrm{si\ } x \geq 0 \end{array} \right. $$ $$ 16) h(x) = \left\{ \begin{array}{ll} 2x-\sqrt[3]{x} & \mathrm{si\ } x < 1 \\ x\sqrt{x} & \mathrm{si\ } x \geq 1 \end{array} \right. $$ $$ 17) f(x) = \left\{ \begin{array}{ll} 2x^2-1 & \mathrm{si\ } x < 0 \\ \frac{x-2}{2} & \mathrm{si\ } x \geq 0 \end{array} \right. $$ $$ 18) f(x) = \left\{ \begin{array}{ll} 3x-2 & \mathrm{si\ } x < 2 \\ 5 & \mathrm{si\ } x = 2\\ 3-x & \mathrm{si\ } x > 2 \end{array} \right. $$ $$ 19) f(x) = \left\{ \begin{array}{ll} \frac{x^2-5x+6}{x-3} & \mathrm{si\ } x \neq 3 \\ \:\:\:\:1 & \mathrm{si\ } x = 3 \end{array} \right. $$ $$ 20) f(x) = \left\{ \begin{array}{ll} x+1 & \mathrm{si\ } x < 3 \\ x^2 & \mathrm{si\ } 3 \leq x < 4 \\ \:\:\:0 & \mathrm{si\ } x \geq 4 \end{array} \right. $$ $$ 19) f(x) = \left\{ \begin{array}{ll} (x-1)+cos(x-1) & \mathrm{si\ } x \leq 1 \\ \qquad \frac{sen(x-1)}{x-1} & \mathrm{si\ } x > 1 \end{array} \right. $$ $$ 21) f(x) = \left\{ \begin{array}{ll} 2^x & \mathrm{si\ } x < 2 \\ \:4 & \mathrm{si\ } x \geq 2 \end{array} \right. $$ $$ 21) f(x) = \left\{ \begin{array}{ll} \qquad e^x & \mathrm{si\ } x \leq -1 \\ \left|x^2-x-2\right| & \mathrm{si\ } x > -1 \end{array} \right. $$

ENTÉRATE PRIMERO, HAZ PARTE

Al ingresar tus datos aceptas nuestras políticas de datos personales

iucolmayor
iucolmayor
iucolmayor
iucolmayor
iucolmayor
iucolmayor
iucolmayor
iucolmayor
iucolmayor
iucolmayor
iucolmayor
iucolmayor