14^A FERIA DE BIOTECNOLOGÍA

Estrategia de edición génica dirigida mediante CRISPR/Cas9 en los genes de defensina de Coffea arabica

RESULTADOS PARCIALES Y DISCUSIÓN

Andrea Gallego¹, Daniela Parada¹, Juan Pinto¹, Sharol Ramírez¹, Miguel Pérez², Sara Ramírez², Javier Torres², Nikol Zamora²

1. Estudiante de Biotecnología. Facultad de Ciencias de la Salud, I.U. Colegio Mayor de Antioquia. 2. Docente. Facultad de Ciencias de la Salud, I.U. Colegio Mayor de Antioquia.

INTRODUCCIÓN

La antracnosis es una enfermedad causada por el hongo Colletotrichum kahawae que afecta el fruto del café, ocasionando pérdidas superiores al 80% [1]. Su control mediante fungicidas incrementa los costos y genera impactos ambientales negativos. Por lo tanto, la edición de genes Ec-AMP-D1 y Ec-AMP-D2 mediante CRISPR/Cas9 surge como una estrategia sostenible para fortalecer resistencia del café frente a la antracnosis.

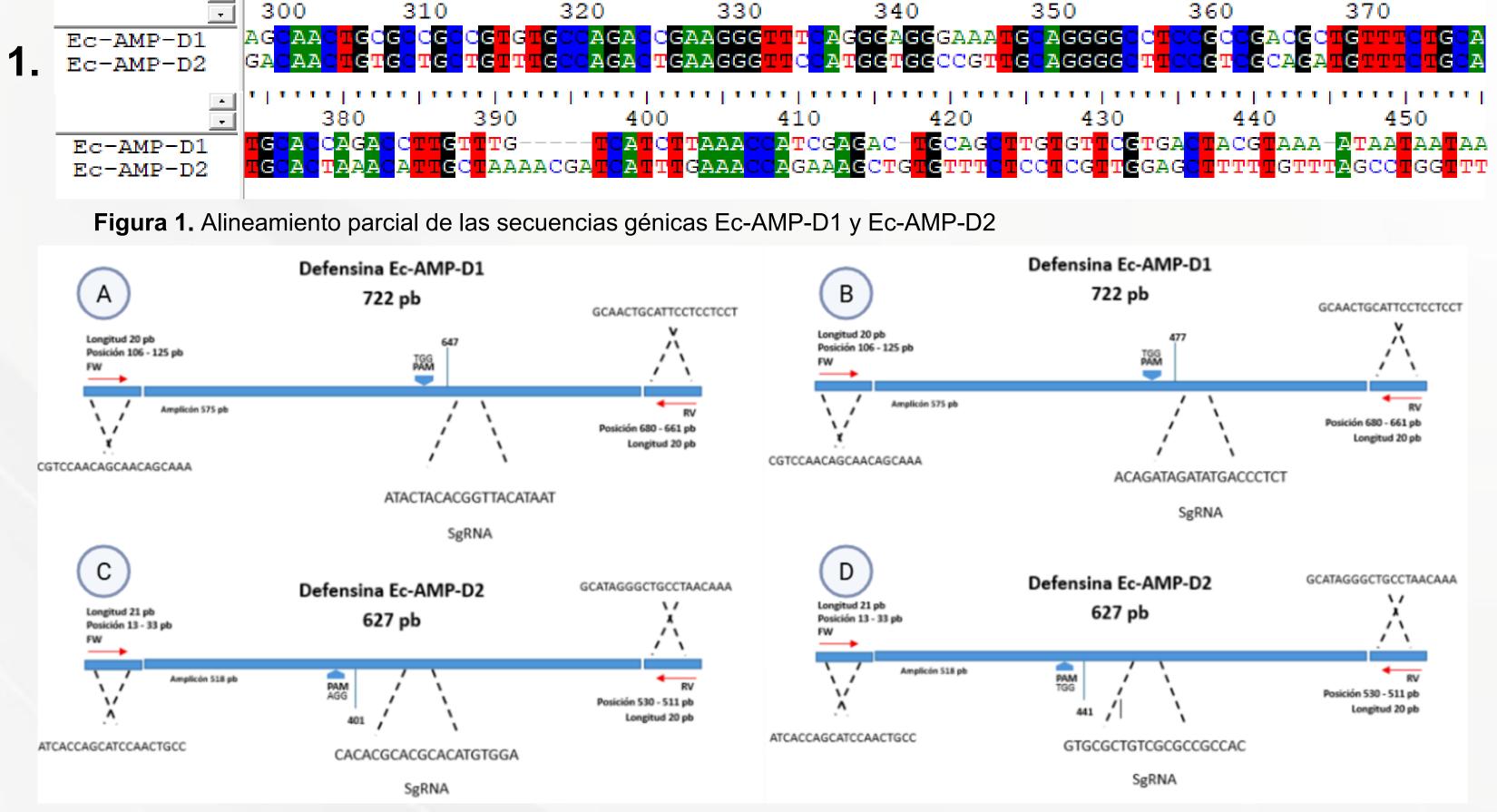
Castillo et al., 2022

OBJETIVO GENERAL:

Evaluar la expresión y funcionalidad mediante la edición génica CRISPR/Cas9 para modificar los genes de defensina Ec-AMP-D1 y Ec-AMP-D2 de Coffea arabica.

OBJETIVOS ESPECÍFICOS:

- 1. Analizar la expresión de los genes de defensina Ec-AMP-D1 y Ec-AMP-D2 Coffea arabica editados genéticamente mediante CRISPR/CAS9.
- 2. Determinar el efecto de la edición sobre la estructura nucleotídica de Ec-AMP-D1 y Ec-AMP-D2.
- 3. Verificar la expresión de las proteínas tipo defensinas codificadas por los genes mutados Ec-AMP-D1 y Ecmediante análisis AMP-D2 moleculares.


REFERENCIAS

[1] Maldonado CE, Ángel-Giraldo L. Resistencia genética a la Enfermedad de la Cereza del Café en variedades cultivadas en Colombia. Rev Cenicafé. 2020;71(1):68-90.doi:10.38141/10778/1121 [2] Midway, S., Robertson, M., Flinn, S., & Kaller, M. (2020). Comparing multiple comparisons: Practical guidance for choosing the multiple comparisons test. PeerJ, 8, e10387. https://doi.org/10.7717/peerj.10387

[3] Molina, D., & Acuña, R. (2024). Optimizing the Genetic Transformation of Coffea arabica Using Agrobacterium tumefaciens. International Journal Of Plant Biology, 15(4), 1250-1265. https://doi.org/10.3390/ijpb15040086

[4] Abdallah NA, Shah D, Abbas D, Madkour M. Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops [Internet]. 2010;1(5):344–50. http://dx.doi.org/10.4161/gmcr.1.5.15091

METODOLOGÍA Edición y validación genética Construcción de Hojas de coffea arabica complejo RNP Hojas Jovenes CRISPOR: ARNG NCBI: Ec-AMP-D1 y Ec-Inducción de embriones AMP-D2 Electroporación BioEdit ClustalW: 2-4 semanas Alineamiento dominios Medio: MS Auxinas, Citoquininas conservados Generando callos (4)5 rotoplasto Digestión enzimatica Regeneración: MS Voltaje 600v cm⁻¹ Gluscosa 1.5% suplementado manitol y pulso de onda Protoplastos calcio cuadrada 20ms Formación de embriones Confirmación Evaluación de la expresión génica y proteica Western blot Presencia y tamaño Analisís estadistico Proteico qRT-PCR Validar expresión

Esquemas del diseño experimental para la edición molecular y la verificación por PCR de dos genes codificantes de defensinas. En los paneles A y B se representa el mismo gen (Defensina Ec-AMP-D1, ~722 pb) pero con diseños alternativos de ARN guía (sgRNA) y con distintos puntos de empalme/objetivo sobre la secuencia; cada esquema indica además la ubicación de los cebadores forward (FW) y reverse (RV) utilizados para amplificar el fragmento de interés.

En los paneles C y D se muestra la otra secuencia (Defensina Ec-AMP-D2, ~627 pb), igualmente presentada con dos alternativas de sgRNA y con sus respectivos puntos de empalme y pares de cebadores.

RESULTADOS ESPERADOS Y DISCUSIÓN

- 1. Se espera obtener un porcentaje de modificación 52,3 % [4] en plantas.
- 2. Se espera generar diferentes variantes alélicas en las plantas.
- 3. Se espera que las proteínas sean expresadas adecuadamente y que su presencia pueda verificarse mediante la técnica de Western blot.

CONCLUSIONES

- Se diseñaron las secuencias de los ARN guías y los primers específicos necesarios para la verificación de la edición genética, lo que permite evaluar de manera precisa la modificación esperada en las defensinas mediante la técnica CRISPR/Cas9.
- Este proyecto busca beneficiar a los caficultores mediante la generación de cultivos más resistentes y mejorados, utilizando variantes de defensinas obtenidas por edición genética libre de marcadores moleculares y sin incorporar modificaciones externas a la especie.

