14^A FERIA DE BIOTECNOLOGIA

Actividad pectinolítica de un extracto obtenido con un aislado de Aspergillus fumigatus nativo usando cáscaras de café y de plátano como sustrato

Ana Sofía Henao ^{1,2}, Andrea Gallego^{2,3}, Jefferson González ^{1,2,3}, Juan Diego Pinto³, Juan Alejandro Ruiz⁴, Karen Romero⁴, Karina Bermúdez², Laura Marín ^{1,3}, Manuela Acevedo⁴, María Valentina Villegas^{2,3}, Nancy Soriano⁴, Paulina Frutis², Samuel Villegas⁴, Saray Angulo¹, Sofía Cardona^{1,2,3}, Sofía Quintero³; José Gregorio Martínez⁵,

Jesús López⁵, Mateo Orozco⁵, Susana Ochoa⁵, Víctor Osorio⁵.

Estudiantes de Biotecnología: 1. Curso Microbiología II. 2. Curso Ingeniería de bioprocesos. 3. Curso Diseño experimental. 4. Curso Biotecnología enzimática. 5. Docente Facultad de Ciencias de la Salud. I.U. Colegio Mayor de Antioquia.

INTRODUCCIÓN

pectinasas enzimas son que representan el 25% del mercado global y son ampliamente utilizadas en la industria de alimentos y bebidas. Su producción comercial suele implicar altos costos y bajos rendimientos, lo que motiva la búsqueda de alternativas más eficientes y sostenibles.

Hongos del género Aspergillus, en especial A. fumigatus, destacan por su capacidad para generar pectinasas gracias a su metabolismo versátil[1].

Este trabajo evalúa el uso de cáscaras de banano y café por su contenido de pectina y su alta producción en Antioquia, como sustratos sostenibles para la producción de pectinasas por A. fumigatus en cultivo sumergido bajo diferentes pH [2,3].

OBJETIVOS

General

Establecer el efecto del sustrato y el pH sobre la actividad pectinolítica y biomasa producida por Aspergillus fumigatus en cultivo sumergido.

Específicos

- Determinar el efecto del pH en el incremento de biomasa y la actividad pectinolítica Aspergillus por fumigatus en cultivo sumergido.
- Evaluar el efecto de sustratos agroindustriales ricos en pectina (cáscara de banano y cáscara de café) sobre el incremento de biomasa y la actividad pectinolítica por Aspergillus fumigatus.

Bibliografía

[1] Ali I, Abdullah R, Saqib S, Nisar K, Kaleem A, Iqtedar M, et al. Statistical optimization of pectinases from thermophilic Aspergillus fumigatus BT-4 employing response surface methodology through submerged fermentation using agricultural wastes. Biotechnology. 2025;25(1):1

https://doi.org/10.1186/s12896-024-00942-6

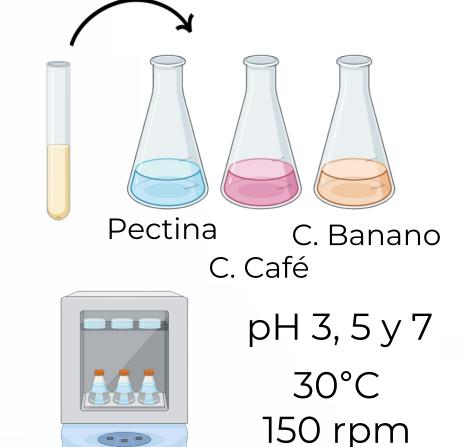
[2] Petruccioli M, Raviv M, Di Silvestro R, Dinelli G. Agriculture and agro-industrial wastes, by-products, and wastewaters: origin, characteristics, and potential in bio-based compounds production. 2011. p. 477-90. https://doi.org/10.1016/b978-0-444-64046-8.00375-x

[3] Pineda JST, García JC, Cruz CMA, Ramírez JES. Obtención de bioproductos a partir de residuos del beneficio húmedo del café (pulpa). Revista Colombiana de Biotecnología. 2022;23(2):6-14. https://doi.org/10.15446/rev.colomb.biote.v23n2.90551

Etapa 1

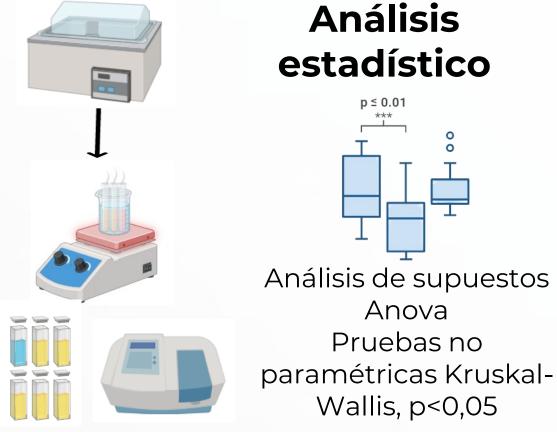
METODOLOGÍA

Descripción microscópica y macroscópica



Actividad enzimática según azúcares reductores liberados y biomasa por peso seco

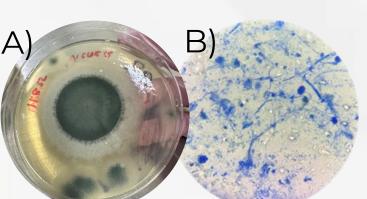
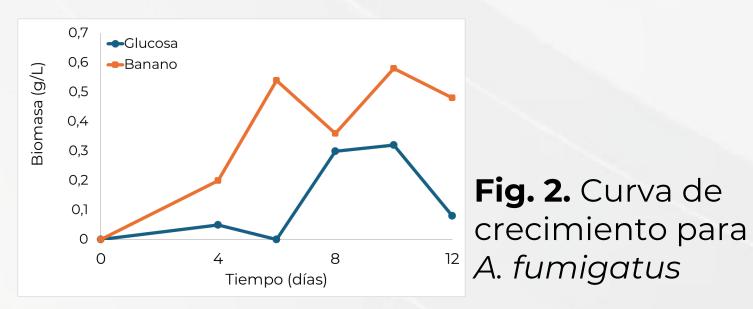
Etapa 2

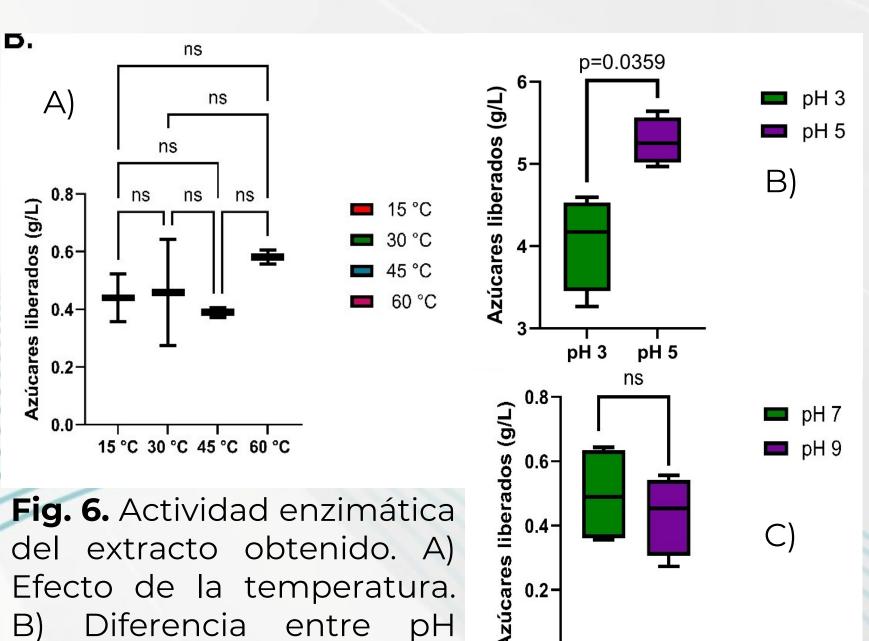


Preparación de sustratos y medios de cultivo

Inoculación e incubación

RESULTADOS


Fig. 1. Morfología del aislado A. fumigatus A) macroscópica y B) microscópica

5.0

Rápido crecimiento, textura aterciopelada y anverso verde grisáceo en el centro, con un borde blanco bien definido. Reverso con tonalidad amarillenta a incolora, sin presencia de pigmentos difusibles.

Hifas hialinas y septadas, con conidióforos cortos terminando en vesículas redondas. Fiálides dispuestas de forma uniseriada, con conidios esféricos de pared rugosa.

ácidos. C) Diferencia entre

pH neutro y alcalino.

pH 9 pH 7

Tratamientos de interacción

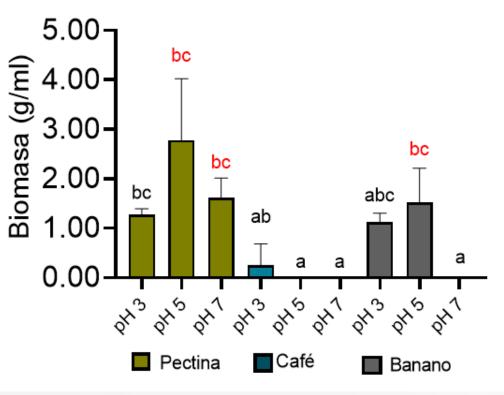
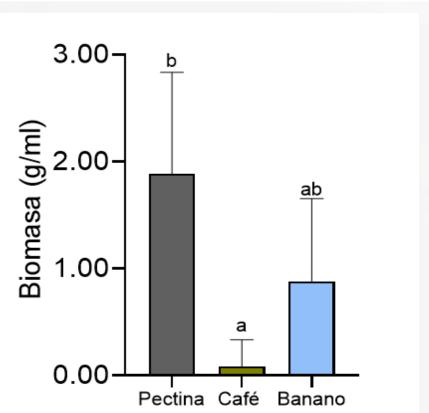



Fig. 3. Efecto combinado de sustrato y pH, sobre la biomasa de A. fumigatus. Letras distintas indican diferencias significativas (p<0,05)

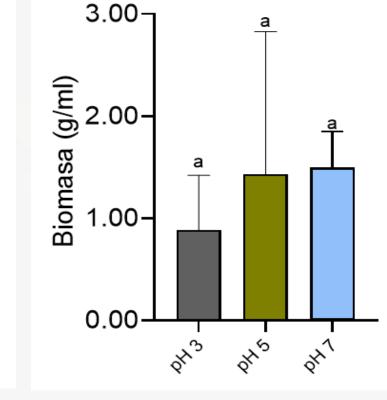


Fig. 4. Efecto del sustrato Fig. 5. Efecto del pH sobre sobre la biomasa producida la biomasa producida

Tabla **1.** ANOVA actividad pectinolítica e función de pH, sustrato y l interacción

	Actividad pectinolitica		
a '	Origen	gl	Significancia
n	рН	2	0,310
la	Sustrato	2	0,432
Ia	pH*Sustrato	4	0,078
		$R^2 = 0,443$	

CONCLUSIONES

- El pH y el tipo de sustrato influyen significativamente en la producción de biomasa de A. fumigatus, con mejor desempeño en medios ricos en pectina como la cáscara de banano en pH 5 y pectina comercial en los tres tratamientos.
- Los sustratos, pH e interacción no tuvieron efectos primarios secundarios significativos sobre actividad pectinolítica.
- No hubo diferencias significativas para la actividad del extracto según la temperatura pero sí presenta mayor actividad a pH 5 y 7.