14^A FERIA DE BIOTECNOLOGÍA

Evaluación de la ecología microbiana en la rizósfera de Heliconia psittacorum y en los diferentes soportes de los humedales de flujo 15 subsuperficial ubicados en Colmayor – Procariotas y hongos

José M. Lema¹, Evelyn M. Giraldo¹, Mariana A. Zea¹, Margarita R. Velásquez¹, Paulina Buitrago¹, María E. González², Deicy A. Rios².

1. Estudiante de Biotecnología. Curso: Microbiología I Grupo AA. 2. Docente. Facultad de Ciencias de la Salud, I.U. Colegio Mayor de Antioquia.

INTRODUCCIÓN

El incremento en la generación de aguas residuales representa una principales causas de contaminación hídrica y deterioro ambiental. Frente a esta problemática, los humedales de flujo subsuperficial se han consolidado como una alternativa sostenible y de bajo costo para el tratamiento de aguas residuales. estos sistemas, las comunidades microbianas desempeñan papel un esencial en la degradación de materia orgánica y la remoción de contaminantes

El estudio de la ecología microbiana en la rizosfera de *Heliconia psittacorum* y en los diferentes sustratos del humedal permite comprender las interacciones biológicas que favorecen la depuración del agua.

OBJETIVOS

Objetivo general:

Evaluar la ecología microbiana en la rizósfera de Heliconia psittacorum y los diferentes soportes de humedales de flujo subsuperficial en el Colmayor.

Específicos:

- Identificar bacterias y hongos presentes en los soportes de la rizósfera y las biopelículas de la planta *Heliconia* psittacorum.
- Determinar qué bacterias y hongos en el humedal subsuperficial pueden llegar a tener potencial bioindicador en la eficiencia del proceso de depuración de aguas residuales.

Bibliografía

[1] Rani, A., Chauhan, M., Kumar Sharma, P., Kumari, M., Mitra, D., & Joshi, S. (2024). Microbiological dimensions and functions in constructed wetlands: A review. Current Research in Microbial Sciences, 7(100311), 100311.

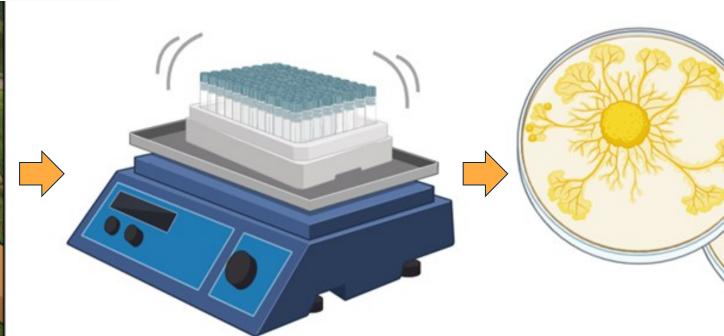
https://doi.org/10.1016/j.crmicr.2024.100311

[2] Whitman, W. B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., Hedlund, B., & Dedysh, S. (Eds.). (2015). Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118960608

[3] Koneman, E. W., Winn, W. C., Allen, S. D., Janda, W. M., Procop, G. W., Schreckenberger, P. C., & Woods, G. L. (2006). Koneman diagnóstico microbiológico : texto y atlas en color (6.ª ed.). Buenos Aires: Editorial Médica Panamericana.

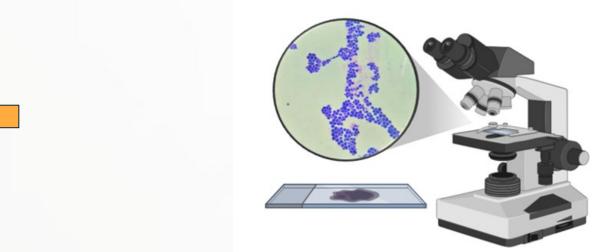
[4] Nyamjav, I., Jang, Y., Lee, Y. E., & Lee, S. (2023). Biodegradation of polyvinyl chloride by Citrobacter koseri isolated from superworms (Zophobas atratus larvae). Frontiers in Microbiology, 14, 1175249.

https://doi.org/10.3389/fmicb.2023.1175249


METODOLOGÍA

transferencia a psittacorum solución salina estéril al 0.85 % para liberar microorganismos de la rizosfera.

biopelícula hisopos estériles de los soportes.



110 rpm por 15 minutos.

Siembra por superficie en medios Rosa Bengala, PDA y PCA para la observación e identificación de mohos, levaduras y bacterias respectivamente.

Aislamiento bacteriano y aplicación de pruebas bioquímicas (LIA, TSI, SIM, Urea, Citrato, MR/VP, Nitrato, Catalasa, Oxidasa) para la identificación.

Caracterización micro y macroscópica (hongos) con azul de Lactofenol; tinción de Gram y prueba de KOH al 3 % (bacterias).

RESULTADOS Y DISCUSIÓN

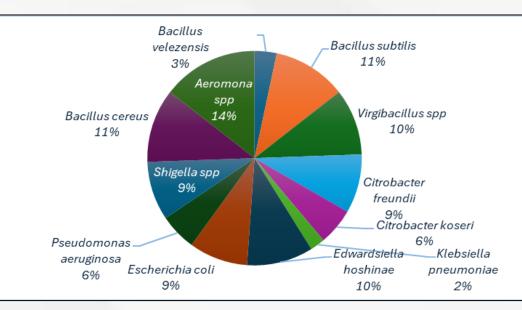


Figura 1. Distribución de la microbiota bacteriana en el humedal

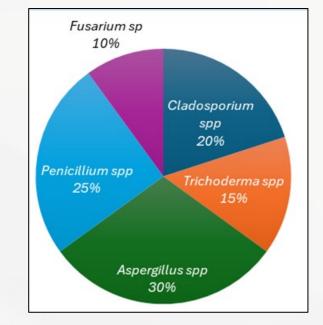


Figura 2. Distribución de familias fúngicas en el humedal

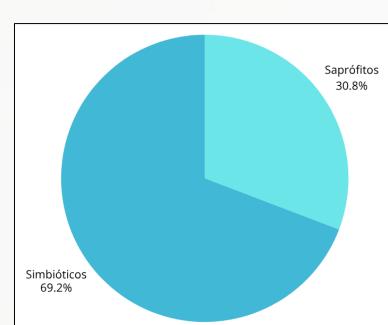


Figura 5. Porcentaje de asociaciones saprófitas y simbióticas

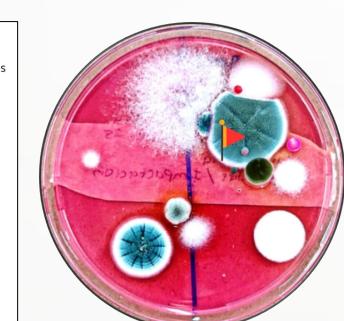


Figura 6. Morfología macroscópica de hongos encontrados en el humedal

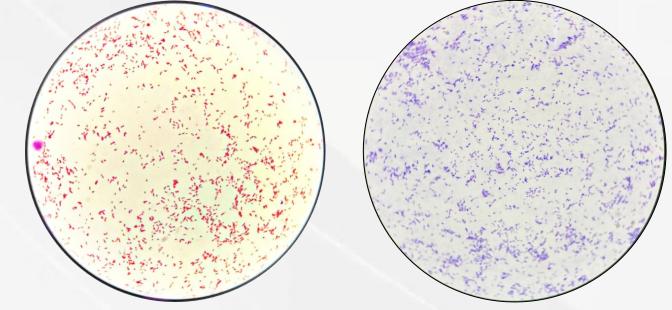


Figura 3. Identificación Gramnegativa y Grampositiva

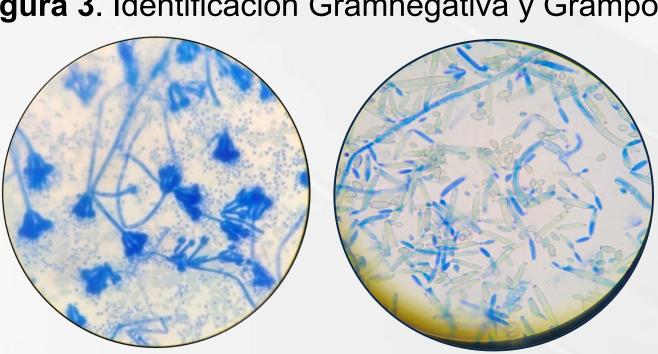



Figura 4. Morfología microscópica de Penicillium sp. y Cladosporium sp. encontrados en el humedal

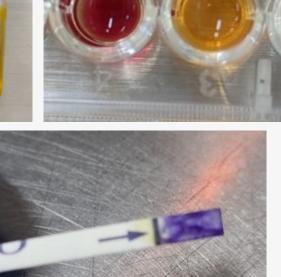


Figura 7. Resultados de pruebas bioquímicas para la identificación bacteriana

CONCLUSIONES

- Se encontró cómo la rizósfera de Heliconia psittacorum concentra una alta diversidad de hongos y bacterias clave (Pseudomonas, Bacillus), confirmando su rol como el principal motor biológico de la fitorremediación y depuración de contaminantes en los humedales.
- El uso exitoso de *Heliconia psittacorum* en los humedales de Colmayor confirma la viabilidad de la fitorremediación con plantas locales, ofreciendo una solución de tratamiento de aguas sostenible y replicable con bajo impacto ambiental.
- La composición de las comunidades microbianas, especialmente las fúngicas, puede servir como un bioindicador sensible de la salud y el desempeño del humedal de flujo subsuperficial, alertando sobre cambios en la calidad del efluente.

