Evaluación del estado de la variabilidad genética e historia demográfica del pez Pimelodus grosskopfii en la cuenca Magdalena - Cauca

María Fernanda Carmona Patiño, Juan David Vasquez Vélez¹, Jose Gregorio Martínez².

- 1. Estudiante de Biotecnología I.U. Colegio Mayor De Antioquia.
- 2. Docente de la Facultad de Ciencias de la Salud I.U. Colegio Mayor De Antioquia.

P14

INTRODUCCIÓN

El río Magdalena - Cauca es crucial la sostenibilidad alimentaria de para especies albergando Colombia, endémicas de gran valor comercial como *Pimelodus grosskopfii*, la cual está amenazada por la sobrepesca, la contaminación y las hidroeléctricas.

El objetivo de ese estudio fue evaluar el estado de la variabilidad genética de la especie de pez *Pimelodus grosskopfii* en la cuenca del Magdalena - Cauca, como base para la toma de decisiones orientadas a su conservación.

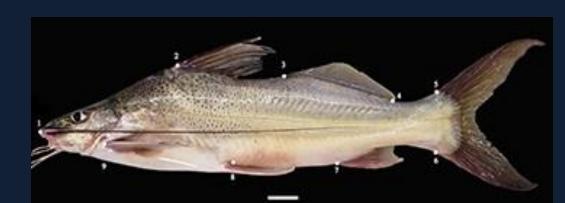


Figura 1. Ejemplar de *Pimelodus grosskopfii*, Nombre común: Capaz.

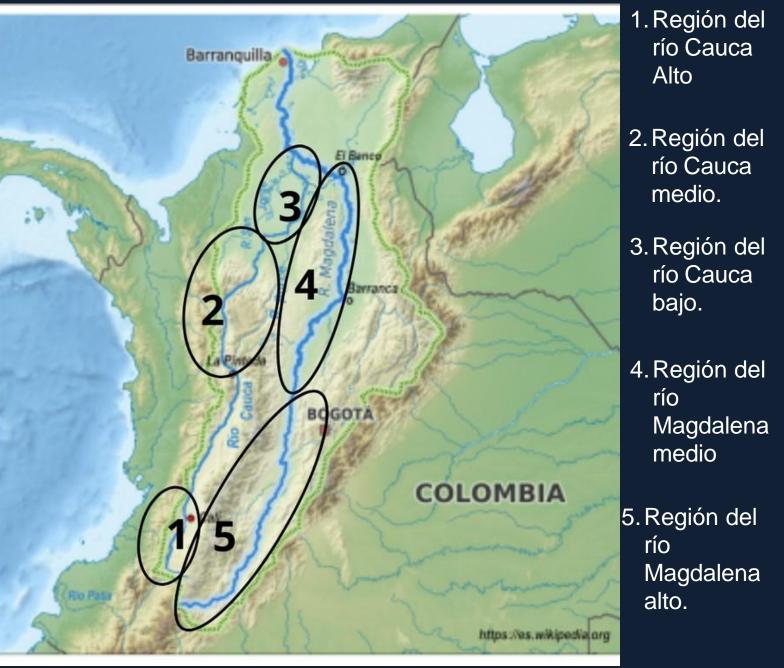


Figura 2. Zonas de muestreo en la cuenca del río Magdalena - Cauca.

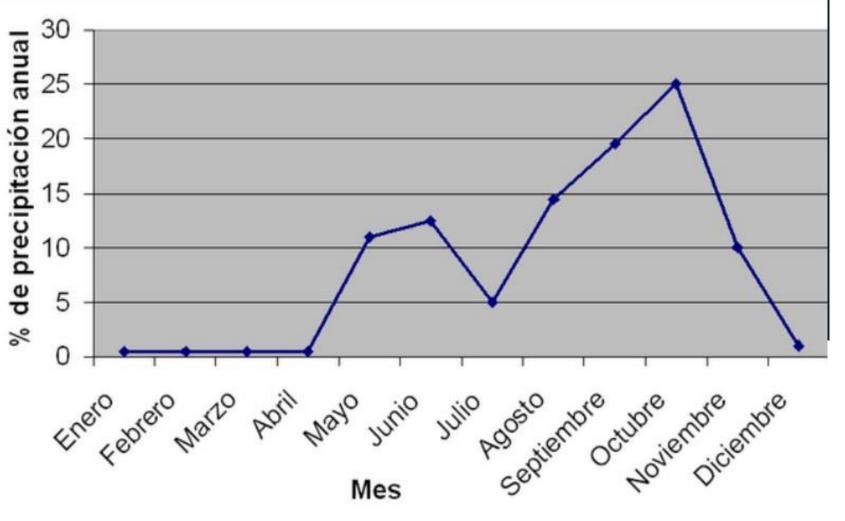
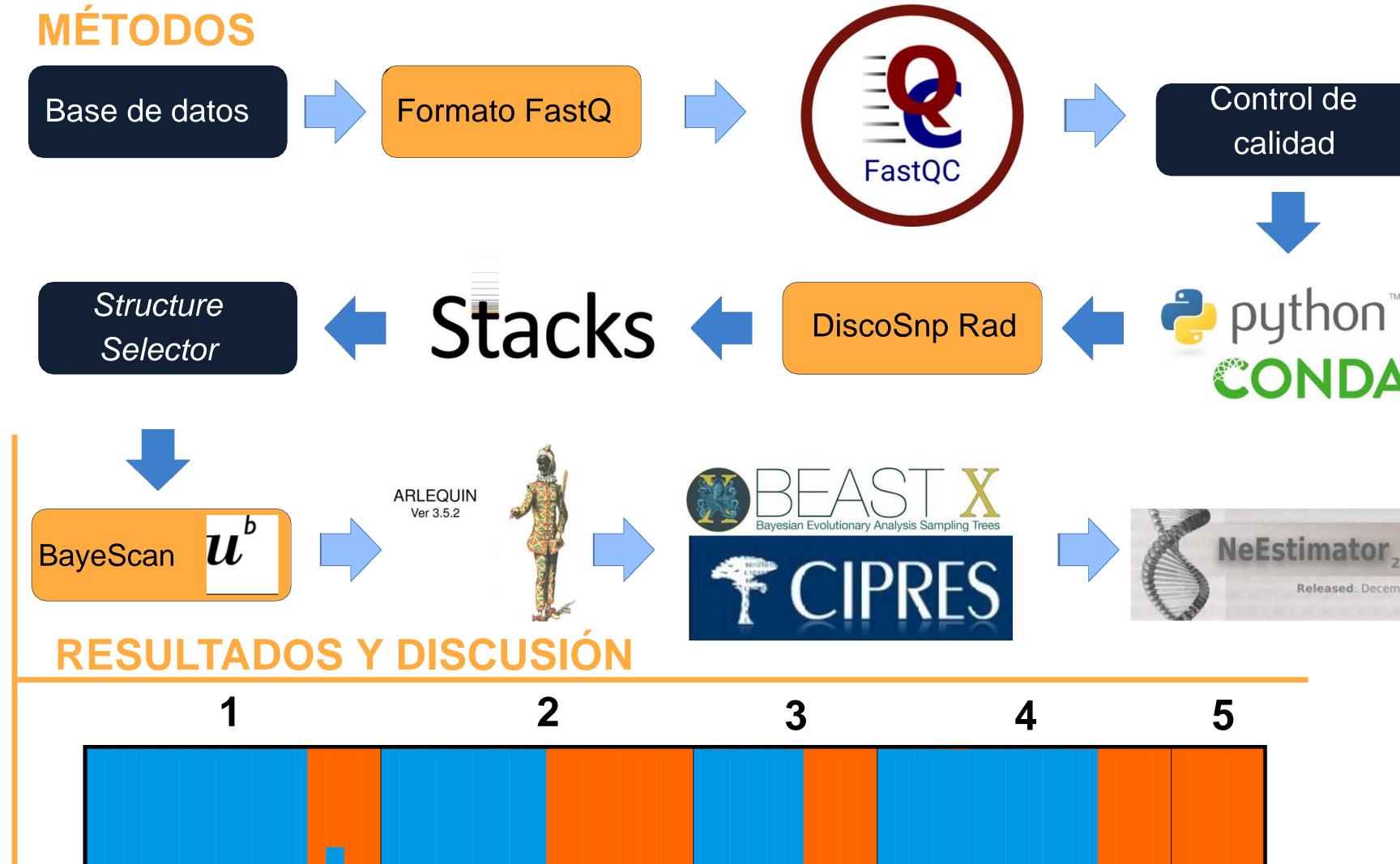



Figura 3. Ciclo anual bimodal de precipitaciones río Magdalena.

Bibliografía

- 1. Jiménez-Segura LF, Restrepo-Santamaría D, López-Casas S, Delgado J, Valderrama M, Álvarez J, et al. Ictiofauna y desarrollo del sector hidroeléctrico en la cuenca del río Magdalena-Cauca, Colombia. Biota Colomb [Internet]. 2014 [cited 2023 Feb 9];15(2):3-25. Disponible en: http://repository.humboldt.org.co/handle/20.500.11761/9452#.YZvGUoa 7C4.mendelev
- 2. Villa-Navarro FA, Acero A y Cala-Cala P. Taxonomic review of Trans-Andean species of *Pimelodus* (Siluriformes: Pimelodidae), with the descriptions of two new species. Zootaxa. 2017; 4299 (3): 337–360. Disponible en: https://doi.org/10.11646/zootaxa.4299.3.2
- 3. Villa-Navarro, F. A., Acero P., A., Cala, P. C. (2017). Taxonomic review of Trans-Andean species of Pimelodus (Siluriformes: Pimelodidae). Universidad De Córdoba. Disponible en: Estado y desempeño de Pimelodus yuma (villa-navarro & acero p, 2017) en el embalse de Urrá y su área de influencia (alto Sinú, Colombia) (unicordoba.edu.co)

Alto Cauca Bajo Cauca Medio Magdalena Alto Magdalena Figura 4. Análisis de Structure de las poblaciones de P. grosskopfii en la cuenca del Magdalena - Cauca. El análisis de 5 poblaciones y 64 individuos, indicó que el número más probable de stocks genéticos fue 2.

Medio Cauca

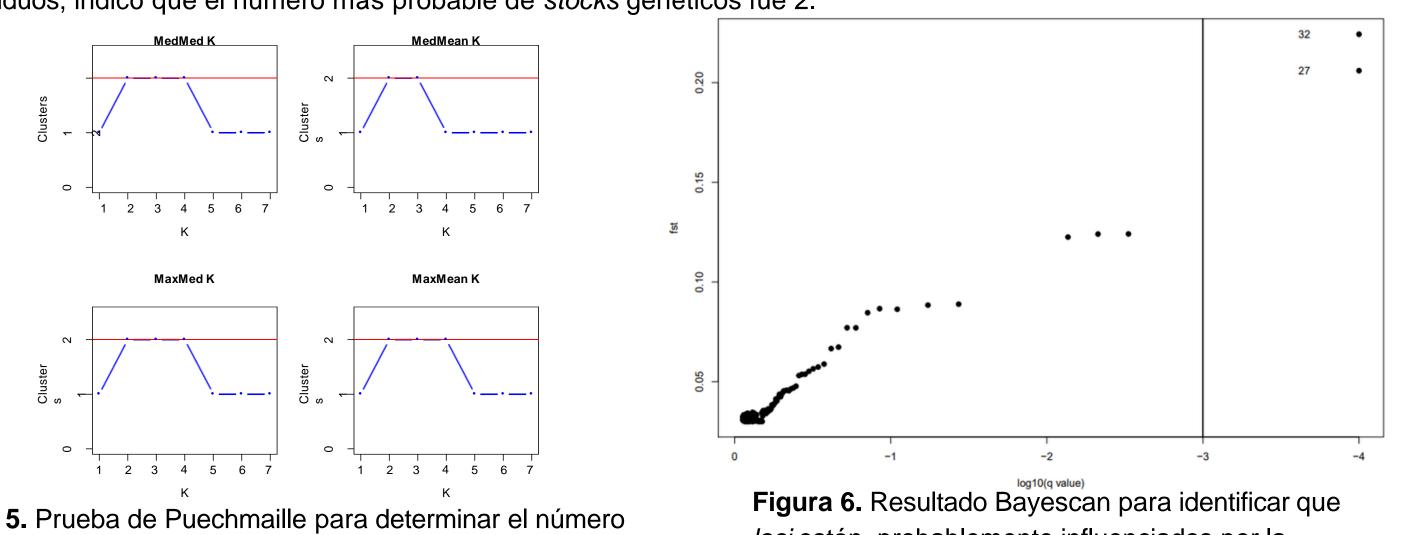


Figura 5. Prueba de Puechmaille para determinar el número de stocks genéticos.

loci están probablemente influenciados por la selección.

Tabla 1. Diversidad genética de Pimelodus grosskopfii de los 2 stocks genéticos de la cuenca Magdalena - Cauca. Na: número de alelos por locus; Ho y He: heterocigosidades observada y esperada; Fis: índice de fijación genética/coeficiente de endogamia.

Población	Número de individuos	Na	Но	He	Fis
Pimelodus grosskopfii Stock 1 (azul)	39	2	0.33117	0.3172	0.04404161412
Pimelodus grosskopfii Stock 2 (naranja)	25	2	0.4701	0.3300	0.4244811392

Tabla 2. Estimación del tamaño efectivo de la población (Ne) usando el método de desequilibrio de ligamiento con frecuencia alélica de 0.20 para el stock #1

Número de individuos	Número de <i>loci</i>	<i>Loci</i> no polimórficos	Tamaño muestral armónico	Comparaciones independientes	r² total	r² esperado en la muestra	Ne estimado	Intervalo de confianza del 95% (IC) Ne (Paramétrico)	IC del 95% Ne (Jackknife)
39	471	29	38.4	95,698	0.030039	0.028162	176.0	153.1 - 204.9	85.4 - 2845.4

Tabla 3. Estimación del tamaño efectivo de la población (Ne) usando el Método de Desequilibrio de Ligamiento con frecuencia alélica de 0.20 para el stock #2

Número de individuo s	Número de <i>loci</i>	<i>Loci</i> no polimórfico	Tamaño muestral armónico	Comparaciones independientes	r ² total	r ² esperado en la muestra	Ne estimado	Intervalo de confianza del 95% (IC) Ne (Paramétrico)	Intervalo de confianza del 95% (IC) Ne (Jackknife)
25	471	11	21.7	104,734	0.056681	0.052903	80.0	70.5 – 91.7	Infinito

CONCLUSIONES

- Pimelodus grosskopfii posee estructura genética a lo largo de la cuenca Magdalena -Cauca, la cual consistió en dos stocks genéticos coexistentes y distribuidos aleatoriamente, los cuales están asociados a selección genética positiva diferencial.
- estudio revela una variabilidad genética moderada en las poblaciones (heterocigosidad y endogamia), con Ne mínimo recomendado (>50) para evitar los posibles efectos nocivos de la depresión endogámica y el riesgo de extinción. Sin embargo, este es inferior (<500) a lo necesario para un potencial evolutivo saludable y una persistencia a largo plazo.

Ciencia, Tecnología e Innovación