AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Sustainable Materials

Geopolymers, OPC and LC3: Insights from chemical composition and structures

DSc. Maria Paiva Oct 18th2018

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: New Cementing Systems

X SEMINARIO LA SOSTENIBILIDAD UN

PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN <u>Y POLÍTICAS PÚBLICAS</u>

The world around us

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Motivation: Where we want to be?

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Multiscale Microstructural Context

Nano-Size - Level 0 (10⁻⁹-10⁻¹⁰m) **Micro-Size - Levels I and II** (Cement paste < 10⁻⁴m and CSH matrix 10⁻⁶m)

Macro-Size - Level III (Mortar, concrete > 10⁻³m)

Zhenghong et al. *Journal of Wuhan University of Technology-Mater. Sci. Ed.* Vol 28 (4), xx-yypp, Aug.2013 Constantinides et al. *Cement and Concrete Research*,2004 (34) 67-80.

LDC-S-H HD C-S-H

Anhydrous Water

CSH solid phases with nanoporosity

CSH matrix plus clinker phases, CH crystals and macroporosity LD and HD CHS phases (gel porosity) Cement paste plus sand and aggrega-tes, eventually with interfacial transition zone

Air

X SEMINARIO LA SOSTENIBILIDAD UN

PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: Initial Motivation

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: Current Motivation

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Gill del Fu

Geopolymers: Current Motivation

Genova bridge break up

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: Current Motivation

Wincret Brazil

Decorative architectural geopolymer binder panels for inside and outside

www.winblok.com.br

Ceranex

Nova Lignum Netherlands

Ceranex™ Geopolymer composite sidings and façade claddings

www.novalignum.nl

Watershed Materials USA

Geopolymer blocks made out of clay, geology, rice husk, lime and slag

watershedmaterials.com

Reinforced Concrete Pipes Australia

eCP: geopolymer concrete pipes

www.rcpa.com.au

INSTITUCIÓN UNIVERSITARIA COLEGIO MAYOR DE ANTIOQUIA

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: Current Motivation

Rockwool Australia

Geopolymer rockwool brickettes used to recycle unused fibers

Renca Russia

3D Printer for buildings. Development with Apis-Cor of a 3D printer with a fast setting geopolymer concrete

www.renca.org

Schlumberger France

Patent: WO/2008/017414 Pumpable geopolymer formulation for oilfield application

Pyromeral Systems France

High-tech high-temperature structural geopolymer composite materials for automotive, aircraft industries

www.pyromeral.com

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: Current Motivation

Allied Foam Tech Corp. USA

GeoFoam: geopolymer foam cement, for lightweight and fireproof applications

www.alliedfoamtech.com

NanoVoltaics Inc.

USA

Nanoporous geopolymer (npGEO™) composites for use in water treatment as an adsorbent for the removal of arsenic.

www.nanovoltaics.com

Amec Foster Wheeler United Kingdom

SIAL® matrix, a specialised geopolymer technique for encapsulating various radioactive waste streams.

www.amecfw.com

GeoPol Czech Rep.

Geopolymer sand binder for cores in foundries

www.geopol-info.com

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: Definition

- Geopolymers are inorganic polymeros made of SiO₄ and AlO₄ tetraedra alternately bondend by sharing Oxygen atoms. The negative charge of Aluminun on IV coordination state must be balanced by positive ions, such as Na⁺, K⁺, Ca²⁺, Ba²⁺, NH₄⁺, H₃O⁺, etc [DAVIDOVITS, 1991].
- Geopolymers are considered zeolites analogous, but its structure is amorphous or semi-crystalline and result from polymeric condensation of alkaline aluminosilicates and silicates originating tridimensional polymeric structures. [DAVIDOVITS, 1994(b)].

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

a,

a

a

 a_{2}

Cristalinity and Amorphicity

X S E M I N A R I O

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: Composition and Structure

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: Structure and Applications

[1991;1994b]

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymerization

Polisialatos de Sódio DAVIDOVITS [1991;1994b]

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymerization vs Alkaline Activation

DAVIDOVITS [1991;1994b]

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymerization vs Alkaline Activation

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers Insumes: Precursors and Activators

Insume	Precursor				Alkaline Activator						
	Si	Al	Са	А	lkali	s .	Acid Salts	Silicates/Aluminates			
Clays (metakaolin, vermiculite, smectite, bentonite, etc)	X	X		V-T-E Group	V·T·E Group 1 2 Alkali Alkaline metals earth		M ₂ CO ₃	M₂O.nSIO₃			
Slag	Х	Х	х	Period	Hydrogen 1	metais	M_2SO_3	$M_2O.nAl_2O_3$			
Fly Ash	X	Х	X		1.008 Lithium	Beryllium	M ₃ PO ₄	M ₂ O.Al ₂ O ₃ .(2-6)SiO ₂			
Microsilica	х	ALX I			Li 6.94 Sodium	9.0122 Magne-	MF				
Bioresidues ashes (Rice rusk, sugar cane, palm oil, bambu leaves, etc)	X	X	X	3 4 5	11 Na 22990 Potassium 19 K 39098 Rubidium 37 Rb 85468 Caesium	12 Mg 24.305 Calcium 20 Ca 40.078 Strontium 38 Sr 87.62 Barium	M – Alkaline Metals				
	1 2 2 1 1	AT A		6 7 الا ANTIC	55 Cs 132.91 Francium 87 Fr [223] OQUIA	56 Ba 137.33 Radium 88 Ra [226]		A Ledge			

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers Precursors

• Kaolinite calcination and reactivity $Al_2Si_2O_5(OH)_4 \rightarrow (Al_2Si_2O_7) + H_2O$

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Ordinary Portland Cement (OPC): Definition

- Insumes (limestone, clay, slag, sands, etc) containing Ca, Al, Si, Mg, Fe oxides are mixed and partially funded from 1450°C to 1650°C, to make crystalline Calcium silicates and aluminates, knowed as clinker.
- According to API Spec 10A [2015], OPC is a hydraulic binder obtained from clinker Portland grind with addition of plaster (Calcium sulfate) to control the hydration of it components (initial setting time).
- The final product reacts with water to produce a hydrated compound with cementing properties TAYLOR [1998], HEWLETT [2001].

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

OPC: Anhydrous Phases

Cal (CaO)	de 60% a 67%
Sílica (SiO ₂)	de 17% a 25%
Alumina (Al ₂ O ₃)	de 3% a 8%
Óxido de ferro (Fe ₂ O ₃)	de 0,5% a 6%

Fases cristalinas do CP não hidratado HEWLETT [2001]

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

OPC: Hydration Reactions

 $2 \text{ Ca}_3 \text{SiO}_5 + 8 \text{ H}_2 \text{O} \rightarrow 6 \text{ Ca}^{2+} + 10 \text{ OH}^- + 2 \text{ H}_3 \text{SiO}_4^-$ (dissolução)

 $2 \operatorname{Ca}^{2+} + 2 \operatorname{OH}^{-} + 2 \operatorname{H}_3 \operatorname{SiO}_4^{-} \rightarrow \operatorname{Ca}_2(\operatorname{OH})_2 \operatorname{H}_4 \operatorname{Si}_2 \operatorname{O}_7 + \operatorname{H}_2 \operatorname{O}$ (precipitação)

 $2 C_3 S + 7 H_2 O \rightarrow 2 C - S - H + 4 Ca^{2+} + 8 OH^-$

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

OPC Classifications: ASTM, ABNT and API

DENOMINAÇÃO	SIGLA	NORMA ASTM	SIGLA	NORMA NBR	SIGLA	NORMA API
Portland comum	I	C 150	CPI	5732	A	SPEC 10A
Portland com moderada resistência à sulfato	п	C 150	CPIRS	5737	B MSR	SPEC 10A
Portland com alta resistência à sulfato	V	C 150	-		B HSR	SPEC 10A
Portland com alta resistência inicial	III	C 150	CP V- ARI	5733	С	SPEC 10A
Portland para temperatura moderadamente elevada (*)	-	÷	-	-	D	SPEC 10A
Portland para temperatura elevada (*)	-	-	18		Е	SPEC 10A
Portland para temperatura extremamente elevada (*)	2	2	-	~	F	SPEC 10A
Portland para poço de petróleo	-	-	CPP classe G	9831	G	SPEC 10A
Portland para poço de petróleo	-	-	-	-	Н	SPEC 10A

Nota: (*) Não há um nome oficial para este tipo de cimento.

Adaptado de PAIVA [2008]

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

OPC vs Geopolymers

C ₃ S	K-oligo(sialate-siloxo)
0 Ca++	он он он
ca++ O-Si-O	OH-SI-O-AI-O-SI-OH
0 0	OH OH OH
O-Si-O Ca++	Polycondensation Geopolymer is a
H ₂ O Hydratation	♦ si Polymer Chemistry
	`ې ې ې (poly-sialate)
H20 Ca(OH)2 OH20	O-Si-O-Al-O-Si-O-
Ca++ O-Si-O-Si-O Ca++ 0 H20 Ca++ 0	Si DAVIDOVITS 2018
Ca-di-silicate-hydrate CSH	K-poly(sialate-siloxo)

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

OPC: Idealized Structres

 $CO_{2} + H_{2}O = H_{2}CO_{3}$ $H_{2}CO_{3} + Ca(OH)_{2} = CaCO_{3} + H_{2}O$ $H_{2}CO_{3} + CaCO_{3} \rightleftharpoons Ca(HCO_{3})_{2}$ $Ca(HCO_{3})_{2} + Ca(OH)_{2} = 2CaCO_{3} + 2H_{2}O$

LEA's 2008

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Insumes Availability and Challenges

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Limestone Calcined Clay Cement (LC3)

- Availability, purity, performance and cristalization
 - Blended OPC
 - Additional reaction: limestone and metakaolin → CASH

LC3, 2018

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

OPC, Geopolymers and LC3

Similarities			Differences				
Reaction	Dissolution	Alkaline Activation	Portland and LC3	Hydration Reaction Monomeric Products Micrometric Matrix Caustic Solids Chemical Shrinkage Slow reaction with controlled setting			
	Exothermic Reactions	Produtos de reação amorfo	Geopolymer	Geopolymerization Reaction Polymeric Products Nanometric Matrix Neutral Solid No Chemical Shrinkage Fast reaction and setting			
Structure	Cementitious Materials	Brittle	Drying Shrinkage	More pronounced on geopolymer			
			COLEGIO MAYOR				

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

OPC, Geopolymers and LC3

Mechanical Performance targetting Durability

Durability									
Cementing Syst	em	Environmental Harshness							
Materials	Process	Physical	Chemical						
Cement Type and Content	Mixture	Abrasion	Dissolution						
Agregates	Transport	Erosion	Lixiviation						
Additives	Compactation	Cavitation	Expansion						
Dosage	Cure	Mechanical Cycling	Contration						
	Temperature	Thermal Cycling	Alteration						

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Chemical Bonds

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Solubility and Molarity

Table 17.3	Solubilities of le	onic Compounds*	aq =	aqueous	(dissolves	in	water);
s = solid (doe	es not dissolve in	n water)					

lons	Acetate	Bromide	Carbonate	Chlorate	Chloride	Fluoride	Hydrogen Carbonate	Hydroxide	lodide	Nitrate	Nitrite	Phosphate	Sulfate	Sulfide	Sulfite
Aluminum	s	aq		aq	aq	s		s	_	aq		s	aq		
Ammonium	aq	aq	aq	aq	aq	aq	aq		aq	aq	aq	aq	aq	aq	aq
Barium	aq	aq	8	aq	aq	s		aq	aq	aq	aq	s	s	-	s
Calcium	aq	aq	8	aq	aq	8		s	aq	aq	aq	s	s	-	s
Cobalt(II)	aq	aq	s	aq	aq	-		s	aq	aq		s	aq	s	s
Copper(II)	aq	aq	s	aq	aq	aq		s		aq		s	aq	s	
lron(ll)	aq	aq	8		aq	s		s	aq	aq		s	aq	s	s
lron(III)	_	aq			aq	s		s	aq	aq		s	aq	-	
Lead(II)	aq	s	s	aq	s	s		s	s	aq	aq	s	s	s	s
Lithium	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	s	aq	aq	aq
Magnesium	aq	aq	s	aq	aq	S		s	aq	aq	aq	s	aq		aq
Nickel	aq	aq	s	aq	aq	aq		s	aq	aq		s	aq	s	s
Potassium	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq
Silver	s	s	s	aq	s	aq		<u></u>	s	aq	s	S	s	s	s
Sodium	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq	aq
Zinc	aq	aq	s	aq	aq	aq		S	aq	aq		S	aq	S	s

 $\mathbf{M} = \frac{\text{moles solute}}{\text{Liters of solution}}$

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Critical Factors for Geopolymer Design

- Precursor Nature

- Chemical composition, granulometry, SSA, amorphous, microestructure, porosity
- Activator Alkalinity / Acidity
 - Precursor dissolution and reaction rate
- Molar Ratio
 - SiO₂/Al₂O₃ (mechanical performance)
 - M₂O/Al₂O₃ (network stability and durability)
 - H₂O/M₂O (liquid/solid ratio)
- Curing Conditions
 - Temperature, pressure and environment effects

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

QAQC and Performance Techniques

- Physical
 - XRF, XRD, granulometry, SSA, picnometry, permeability
- Chemycal
 - Solubility, FTIR, amorficity, cristalinity,
- Physical-Chemical
 - TG/DTA/DSC, calorimetry, NMR
 - Mechanical
 - Compression, tension, flexão
 - Térmicas
 - Expansão/contração térmica
 - Condutividade térmica

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymers: Al amorphous structure

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymer Properties

¹ L.T.G.S. on kaolinitic soils. Mechanical compressive strength in MPa for untreated and geopolymerized kaolinitic earth (with 3% by weight equivalent Na₂O). Setting temperature range between 20°C and 1000°C

La Sostenibilidad un Punto de Encuentro

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymer Properties

Table 1 Summary of porosimetry of pure K-GP measured by Porotech, Inc., United States

Parameter	Value
Average logarithmic pore radius	0.4362 nm
Average pore radius	3.3711 nm
Porosity over weight	0.3165 cm ³ /g
Porosity over volume	0.4106 cm ³ /cm ³
Meso- and macro-pore surface over weight	190.5778 m ² /g
Meso- and macro-pore surface over volume	247.2794 m ² /cm ³
Total pore surface over weight	274.6912 m ² /g
Total pore surface over volume	356.4186 m ² /cm ³
Density of solid phase	2.0481 g/cm3

Fig. 6 SEM micrograph of fully reacted region of geopolymer showing its nanoparticulate microstructure.35

La Sostenibilidad un Punto de Encuentro

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymer Properties

La Sostenibilidad un Punto de Encuentro

10-15

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymer Properties

Table 5 Summary of flexure strengths of geopolymer composites (GPCs) with various inorganic reinforcements

Reinforcement	Wt% additions	Flexure strength (MPa)
Chamotte (25 µm) ¹⁶	50	15.33
Dolomite (45 µm) ⁹²	20	15.92
Mica phlogopite platelets (50-100 µm) ⁸⁶	20	11.4
Granite powder (\leq 90 µm) ¹⁷	55	10.3
Dicalcium phosphate (2CaO · P2O5)89	15	10.4
Hydroxyapatite bone ash ⁸⁹	15	10.0
Bangladeshi Mymensingh clay containing 40 wt% quartz reinforced	7.5+7.5	14.3
with dicalcium phosphate (2CaO · P ₂ O ₅) and glass frit ⁸⁹		
Alumina platelet grinding media (50 μm) ^{95,96}	70	20 (RT) to 40 (at 1200°C)
Alumina chopped Saffil fibers ($\phi = 3 \mu m$) ⁹⁷	20	20
Carbon chopped fibers (60 μ m \times 7 μ m ϕ) ⁴⁹⁻⁵¹	20	22.2
Carbon chopped fibers (100 μ m \times 7 μ m ϕ) ⁴⁹⁻⁵¹	20	29.9
Basalt chopped fibers (1/4") ^{14,15}	10	19.5
Basalt chopped fibers (1/2") ^{14,15}	10	27
Graphene nanoplatelets	3	12
Basalt felt ¹⁸	10	22.2
Fiberglass felt ¹⁸	10	5.6
Basalt 4" chopped strand mat ¹⁹	20	31
Basalt fiber weave ¹⁹	30	41
E-glass Leno weave ⁸⁷	25	25.6
Carbon unidirectional fiber ^{53,54}	20	269
Nextel 610 alumina (8 satin weave) ³⁶	50	45.8
Nextel 720 (mullite + 15 vol% alumina) ³⁶	50	46
Xtegra auxetic fibers from Advanced Fiber Technologies, Inc.	50	12.9 25% strain to failure

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymer Properties

Fig. 12 Fusion temperature of geopolymers (pure matrix) (**)

Fig. 13 Coefficient of thermal expansion for geopolymers and tooling materials

X S E M I N A R I O

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymer Properties

Figure 11: Break up in acidic environment (5% acid solutions) for Portland cement, blended slag/Portland, Ca-aluminate cement and Poly(sialate-siloxo) cement.

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymer Properties

Figure 12: Radium level in uranium waste tailing

Figure 13: Efficiency of geopolymeric cements, % of trapped heavy metal

LA SOSTENIBILIDAD UN PUNTO DE ENCUENTRO

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Geopolymer Properties

Figure 18: Estimated increase or decrease of production costs for construction materials, due to planed Eco-taxes on Energy alone or on actual CO_2 emissions (Energy+Chem.CO₂).

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Independent of the Cement System!

THE WORLD IS BEAUTIFUL OUTSIDE WHEN THERE IS STABILITY INSIDE.

AVANCES DE LA CONSTRUCCIÓN SOSTENIBLE: MATERIALES, GESTIÓN Y POLÍTICAS PÚBLICAS

Questions?

