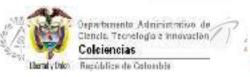
IV Seminario Internacional La Sostenibilidad un Punto de Encuentro



Sostenibilidad y responsabilidad social en Iberoamérica

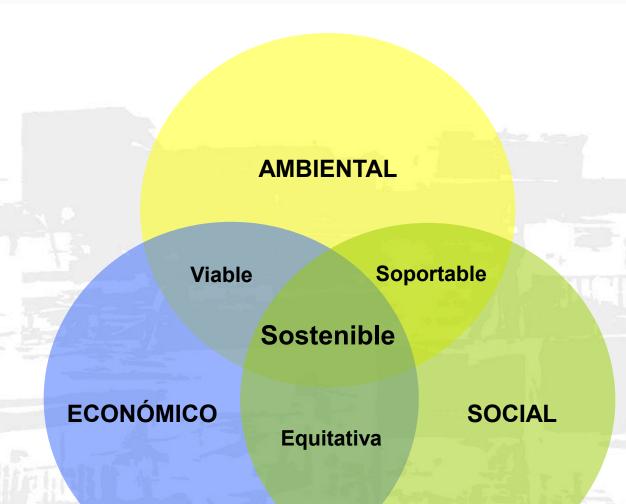
Sostenibilidad y responsabilidad social en Iberoamérica

Óscar Flecha Quintanilla¹ Ángel Gallegos Dávalos¹ Jorge I. Montoya Restrepo² Jordi Morató Farreras¹

1 Cátedra UNESCO de Sostenibilidad - **Universidad Politécnica de Cataluña** - Barcelona (España) 2 Institución Universitaria **Tecnológico de Antioquia** - Medellín (Colombia)

Cátedra UNESCO de Sostenibilidad de la UPC

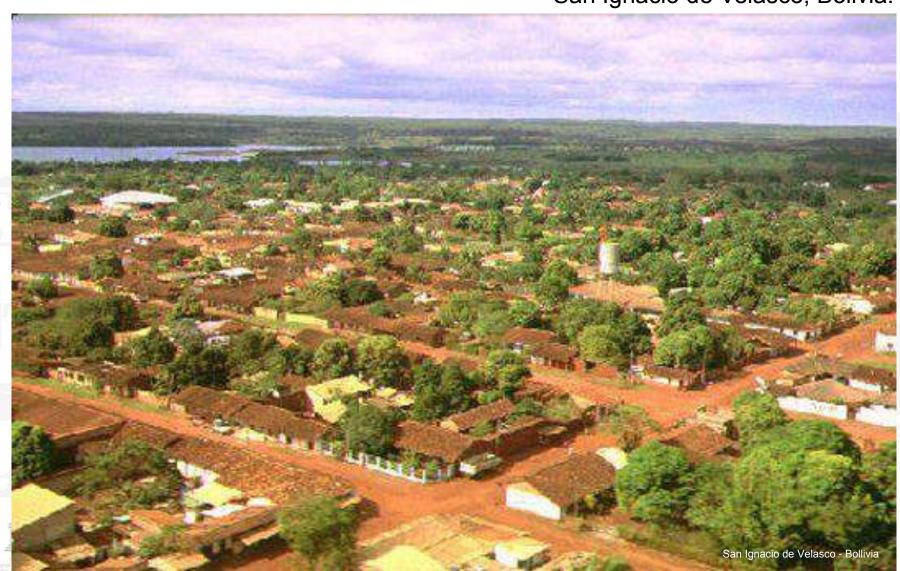
http://cus.upc.edu - www.aquasost.com - http://portalsostenibilidad.upc.edu


Centro multidisciplinar creado en 1996, con voluntad de ser un espacio interdisciplinario, crítico, reflexivo y abierto que fomente una tecnología que contribuya al desarrollo humano sostenible de un mundo, en cambio global, donde cada vez haya menos desequilibrios y más diversidades.

Se trabaja en el análisis, asesoramiento y desarrollo de proyectos aplicados con énfasis en el desarrollo humano sostenible. Para poder facilitar estas dinámicas de cooperación se favorece desde la base el **establecimiento de redes internas y externas o multi-redes**, evitando duplicación en las funcionalidades y simplificando a la vez las estructuras.

La cooperación refuerza y amplía la capacidad de los grupos involucrados en acciones de formación, de I+D+i, divulgación y transferencia. El trabajo en multiredes se presenta como una clave para desarrollar con éxito los proyectos y el trabajo de investigación sobre un tema tan complejo y multidisciplinar como la sostenibilidad.

Paradigma de **Sostenibilidad**



Planeamiento Urbano Sostenible

San Ignacio de Velasco, Bolivia.

Planeamiento Urbano Sostenible

Crecimiento progresivo y sustentable Gestión: Sistemas de Información Geográfica.

Barrios de **consumo energético 0**Diseño arquitectónico bioclimático.
Autonomía energética.
Integrar renovables.

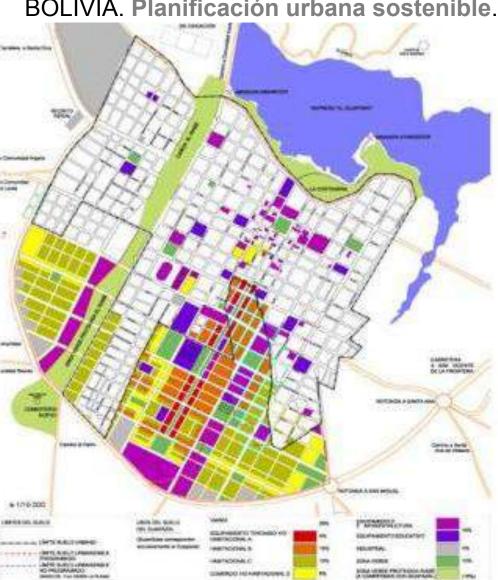
Movilidad sustentable

Estrategias de movilidad (vehículo y peatón).

Accesibilidad universal en ciudad y edificios.

Participación

Diseño urbano participativo. Diseño de género inclusivo.


Planeamiento Urbano Sostenible

BOLÍVIA. Planificación urbana sostenible.

San Ignacio de Velasco San José de Chiquitos

- _Sistema de Información Geográfica.
- Urbanismo progresivo.
- Dignificación de los barrios periféricos.
- _Infraestructuras urbanas sostenibles
- _Jerarquías de tránsito (áreas de pacificación).
- Generación de nuevos polos de actividad en la periferia (centros administrativos, mercantiles).

Imagen de la ciudad.

Diseño de soluciones sustentables. Materiales de bajo impacto ambiental.

Economía social sostenible:

Desarrollo de la industria local. Fomento del empleo.

Vegetación autóctona.

Soluciones de mantenimiento de bajo costo.

Participación.

Procesos. La ciudad que queremos. Diseño de género inclusivo.

BOLÍVIA. Ciudades patrimonio de la humanidad.

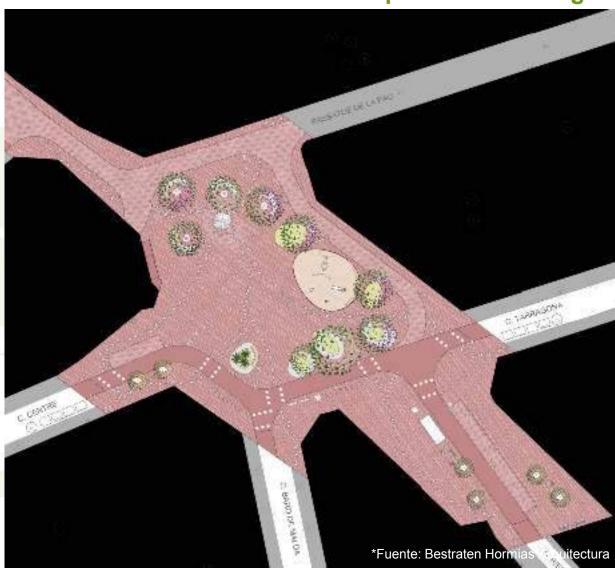
BOLÍVIA. Ciudades patrimonio de la humanidad.

*Fuente: Bestraten Hormias Arquitectura

_Diseño imagen ciudad San Ignacio / San José.

_Diseño sustentable pavimentos, mobiliario, riego vegetación.

BOLÍVIA. Ciudades patrimonio de la humanidad.



ESPAÑA. L'Hospitalet de Llobregat.

ESPAÑA. L'Hospitalet de Llobregat.

_Materiales de bajo impacto ambiental.

_Participación ciudadana en la fase de proyecto.

Bioclimátismo:

Orientación Captación - cesión pasiva de energía

Edificios de consumo 0:

Energías renovables integradas: Placas solares, geotermia, energía eólica, recuperación de energía.

Materiales bajo impacto ambiental:

Innovación en materiales: bambú, tierra, madera laminada, cerámica, hormigón de fibras.

Procesos industriales electrificados (sin combustión).

Reciclabilidad, vida útil.

Huella de carbono en el ciclo de vida útil de un edificio: 2 500 kgCO₂/m²

Extracción y Fabricación	Transporte	Construcción	Uso y Mantenimiento	Derribo Vertido
755 kgCO ₂ /m ²	25 kgCO ₂ /m ²	50 kgCO ₂ /m ²	1 600 kgCO ₂ /m ²	37 kgCO ₂ /m ² 12 kgCO ₂ /m ²
31 %	1%	2%	64%	1,5% 0,5%

ESPAÑA. Escuela Waldorf.

ESPAÑA. Escuela Waldorf.

Innovación tecnológica:

Madera contralaminada.

_Aislamientos de fibra de vidrio.

Acabado con listones de madera.

Energía integrada:

_Sensores de luz natural.

Aislamiento acústico entre aulas.

ESPAÑA. **Escuela Waldorf**: emplazamiento.

ESPAÑA. Escuela Waldorf.

ESPAÑA. Escuela Waldorf: adaptación al terreno.

ESPAÑA. Escuela Waldorf: adaptación al terreno.

ESPAÑA. Escuela Waldorf.

Requerimientos:

_Cumplimiento de la normativa vigente garantizando los niveles de confort, durabilidad y seguridad frente el fuego.

_Viabilidad económica, con un coste similar al de otras soluciones convencionales.

ESPAÑA. Escuela Waldorf.

_Aulas transportables, apilables y reutilizables en otro emplazamiento.

Rapidez de ejecución:

3 meses de obra. El montaje de los módulos duró 6 días.

ESPAÑA. **Escuela Waldorf:** montaje en seco.

ESPAÑA. **Escuela Waldorf:** montaje en seco.

ESPAÑA. Escuela Waldorf: consumo de CO₂.

CONSUMO DE CO2 EN LA CONSTRUCCIÓN

Prefabricado metálico Prefabricado de madera

materiales 801,89 kg CO₂/m²

 $331,56 \text{ kg CO}_2/\text{m}^2$

-58%

CONSUMO DE CO2 EN CLIMATIZACIÓN

Consumo de	Módulo metálico	Módulo de madera	
calefacción	41.34 kWh/m³ anuales	26.07 kWh/m ³ anuals	-37%

U_G (aislamiento global)

0.96 W/m² °C

0,53 W/m² °C +55%

ITALIA. Jardín de infancia "La Clessidra".

ITALIA. Jardín de infancia "La Clessidra".

Uso de paneles prefabricados de madera contralaminada [KLH]

MATERIAL k	gCO ₂ /m2
Cemento	221,00
Cerámica	148,10
Acero	136,40
Cal	57,6
Mortero	51,20
Granulados	
pétreos	21,40
Aluminio	17,20
Aditivos	14,30
Hormigón	
prefabricado	13,20
Madera	8,30
PVC	7,60
Otros	36,10
TOTAL UNESCO Chair on Sustainability	732,40

ESPAÑA. Casa Pasiva Farhaus AF1.

ESPAÑA. Casa Pasiva Farhaus AF1.

Un edificio pasivo permite ahorrar hasta un 85-95% de los costes de climatización, además de proporcionar un confort y una calidad de aire interior inmejorable para las personas.

Características del edificio pasivo:

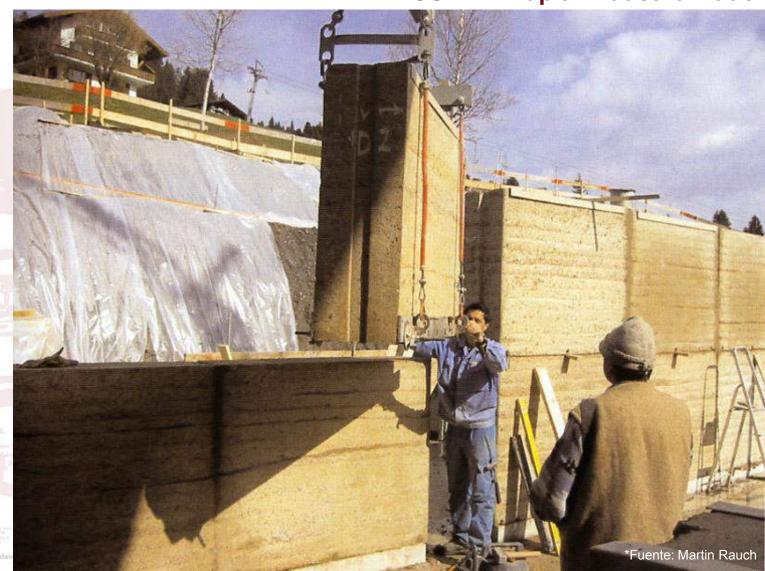
- Orientación adecuada y estudio de sombras exteriores e interiores que pueden afectar la incidencia de la luz solar.
- Utilización de aislamientos compactos y de buena calidad.
- Ventanas y cerramientos energéticamente eficientes.
- Renovación de aire constante para un entorno aun más saludable.
- Utilización de electrodomésticos de bajo consumo.

AUSTRIA. Construir con tierra cruda.

Tierra cruda:

Primer edificio en Alemania de los últimos 150 años con estructura portante y uso público construido en tierra.

AUSTRIA. Tierra cruda – tapial industrializado.



UNESCO Chiar on Sur

AUSTRIA. Tapial industrializado.

ESPAÑA. Vivienda de tapial en Girona.

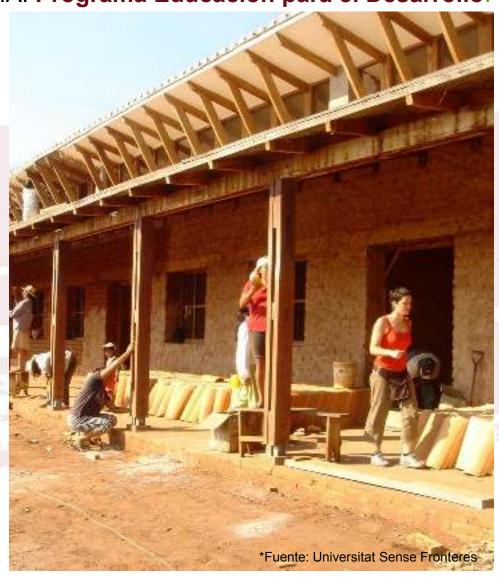
ESPAÑA. Vivienda de tapial en Girona.

_Industrialización de la construcción con tierra.

_Autonomía energética: geotermia.

BOLIVIA. 10 proyectos de escuelas bioclimáticas.

BOLIVIA. Programa Educación para el Desarrollo.



_Ventilación natural.

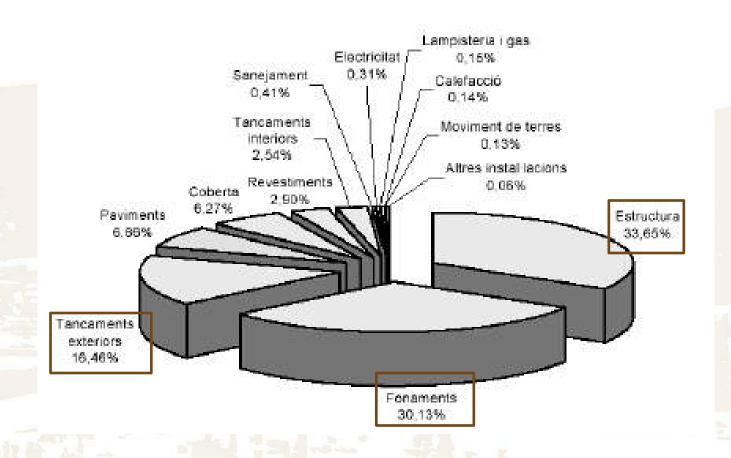
lluminación natural.

Protección al sol y la lluvia.

_Materiales de bajo impacto ambiental.

BOLIVIA. Programa Educación para el Desarrollo.

BOLIVIA. Programa Educación para el Desarrollo.



Emisiones de CO2 durante la vida útil (viviendas): 28 kg

CO₂/m² año

Soluciones bioclimáticas pasivas:

Aislamiento e inercia térmica, protecciones solares, ventilación natural cruzada, efecto chimenea.

Edificios de consumo 0:

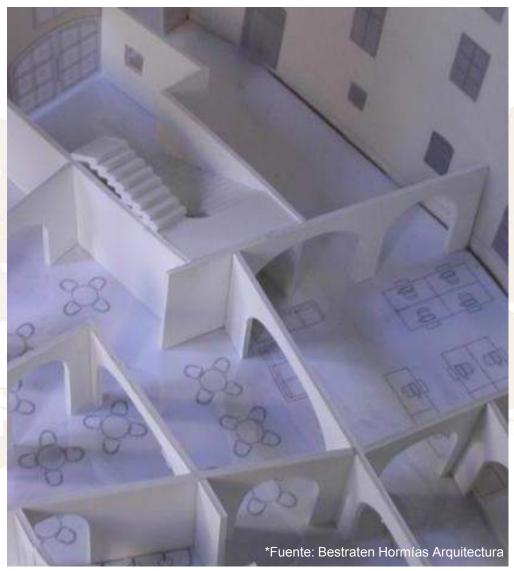
Energías renovables integradas: Placas solares, geotermia, ciclo del agua.

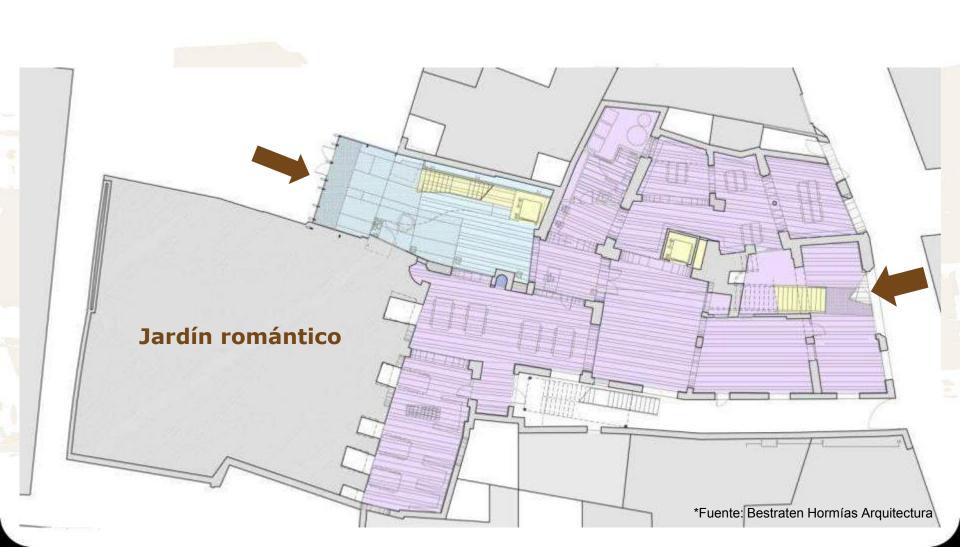
Materiales de bajo impacto ambiental:

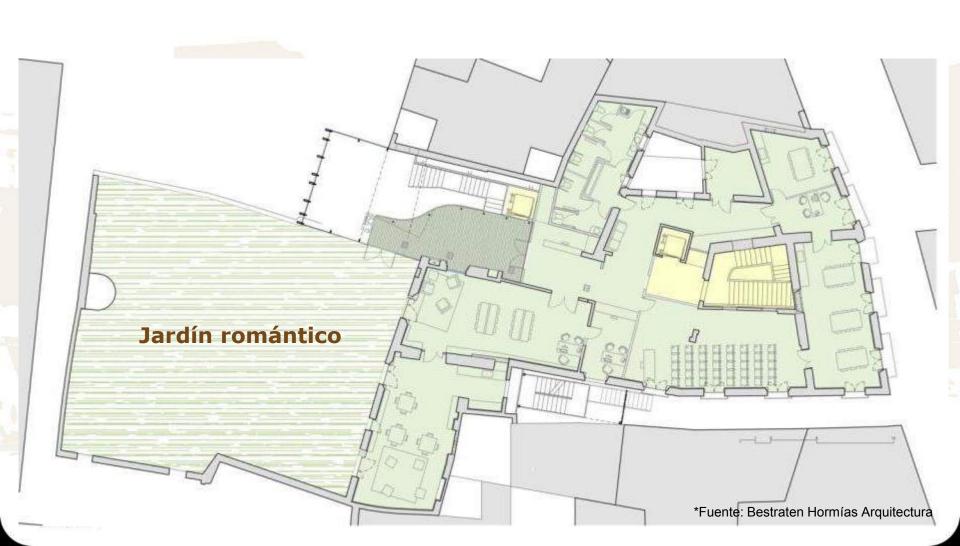
Substitución de materiales potencialmente peligrosos: PVC, pinturas con emisión de compuestos orgánicos volátiles (COV). Uso de materiales con distintivos ecológicos oficiales, materiales locales o reutilizados.

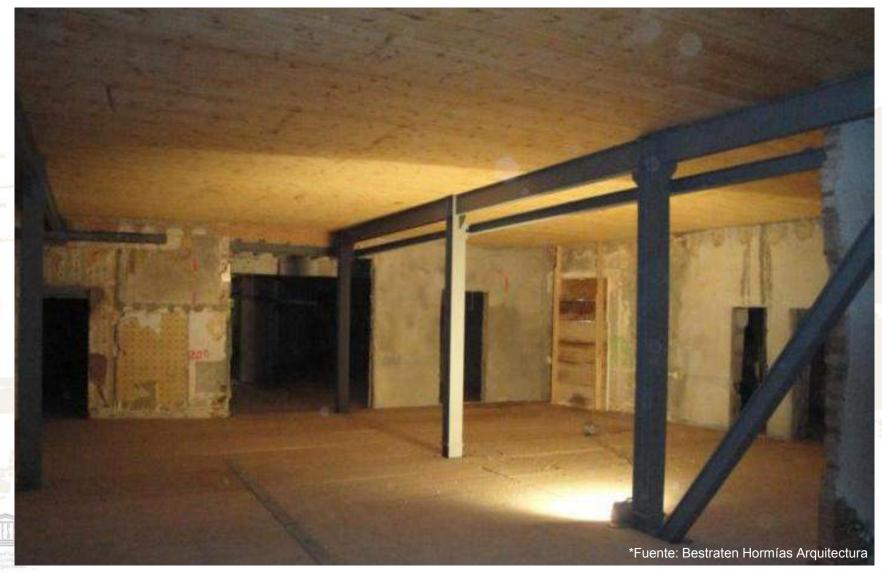
Reciclabilidad, vida útil:

Flexibilidad del diseño para adaptarse a modificaciones de uso, instalaciones vistas o registrables.









ESPAÑA. Rehabilitación Ca la Dona: diagnósis.

ESPAÑA. Rehabilitación Ca la Dona: prefabricación y rehabilitación.

ESPAÑA. Rehabilitación Ca la Dona: prefabricación y rehabilitación.

ESPAÑA. Rehabilitación Ca la Dona: prefabricación y rehabilitación.

ESPAÑA. Rehabilitación Ca la Dona: rendimiento estructural.

Losa de hormigón

Forjado de chapa colaborante

Panells de fusta contralaminada

ESTADO DE CÁRGAS:

Peso propio: **5,00-6,25** KN/m²

Peso propio: **2,50** KN/m²

Peso propio: **1,02–1,24 KN/m²**

Cargas a cimientos:

Cargas a cimientos:

+ 33%

+ 12%

Incremento de pesos propios y cargas permanentes respecto al estado previo del edificio

+ 54% + 18%

- 4%

Incremento de cargas a cimientos respecto al estado previo del edificio:

Sobrecargas de uso del estado previo (residencial) 2 KN/m² y en el estado final (pública concurr.) 5 KN/m²

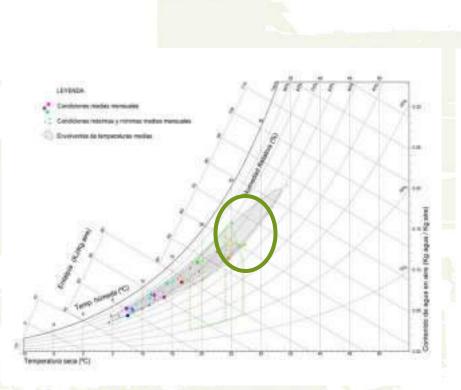
+ 70%

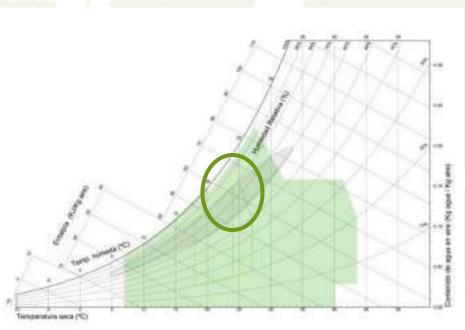
+ 45%

+ 30%

Consumo energético en viviendas.

Energia final i emissions de CO₂ en un habitatge estàndard segons usos Unitats: kWh/habitatge i kgCO₂/habitatge

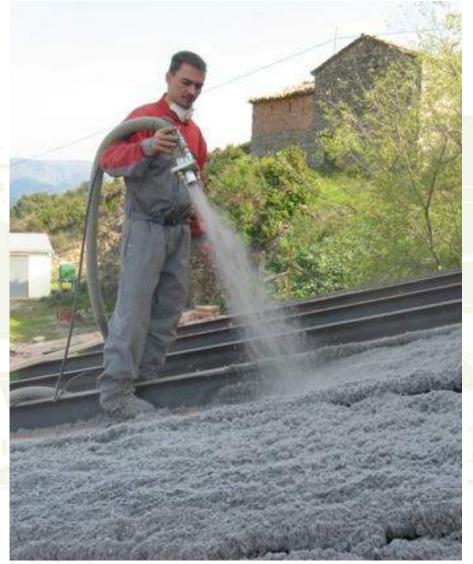

Uso	Energia	Emissions
Calefacció	4940,0 42%	992,9 32%
Aigua calenta sanitària	3150,0 27%	633,1 21%
Cuina y forn	1050,0 9%	211,0 7%
Electrodomèstics	2079,9 18%	942 31%
II·luminació	617 5%	280 9%
Total	11837 kWh/any	3059 kgCO₂/any



Estrategias en bioclimatismo.

Representación gráfica del clima de Barcelona

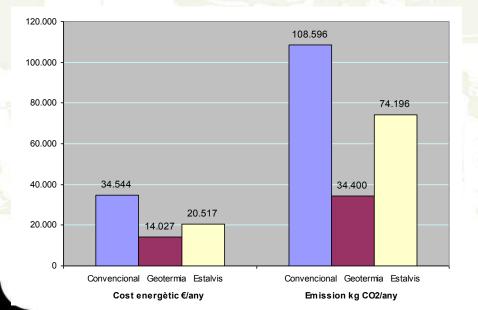
Ámbito de actuación de las estrategias bioclimáticas con sistemas pasivos



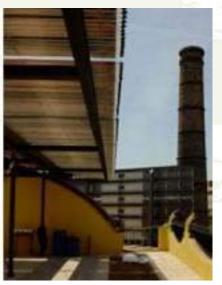
Aislamientos: corcho natural.

Aislamientos: celulosa.

Confort lumínico: reflectores solares en patios.


Climatización: geotermia.

	geotermia	convencional	ahorros
Demanda energética (kWh/año)	360.000	360.000	-
Rendimiento (EER) estacional	4,5	2,07	-
Consumo energético (kWh/año)	80.000	173.913	93.913
Costo total energia (€/año)	8.155	17.729	9.574
Emisiones CO2 (kg CO2/año)	20.000	43.478	23.478



Integración de energías renovables.

Gestión Sostenible del Agua

El Diseño Urbano para la Gestión de Agua [DUGA] propone que los elementos que constituyen el tejido construido de la ciudad (edificios, vías, áreas verdes, etc.) sean componentes de una cadena de tratamiento y gestión, la cual está basada en la implementación de tecnologías apropiadas y el fomento de la participación social en el proceso de gestión del recurso.

El concepto de **DUGA** busca integrar dentro del **diseño urbano técnicas y estrategias que permitan crear ambientes urbanos más sostenibles**, limitando los efectos negativos que las construcciones, las infraestructuras y las actividades humanas tienen sobre el ciclo natural del agua, su calidad y potencial de uso.

Objetivos:

Recomponer el balance hídrico natural del territorio.

Gestionar la demanda de agua externa y maximizar el uso de agua lluvia y depuración de aguas grises.

Minimizar la contaminación del recurso y fomentar el uso de **sistemas verdes**de depuración, con el fin de eliminar al máximo la necesidad de grandes

infraestructuras de tratamiento.

Generar mecanismos que aumenten la **resiliencia** de las estructuras sociales y técnicas frente a las afectaciones previstas por el cambio climático.

Recuperar las características medioambientales y los servicios ambientales relacionados con los ríos y cuencas urbanas.

Líneas de trabajo

Gestión de la demanda

Estrategias de trabajo

- Reuso y reciclaje.
- Uso de agua de lluvia.
- Gestión de la calidad del aqua, fit to purpose.

Objetivos

Protección de las fuentes hídricas.

Gestión de la contaminación

- Control de la contaminación difusa.
- Control de la contaminación puntual.
- Tratamiento primario, secundario y terciario.
- Uso de tecnologías adecuadas

Desarrollo de la resiliencia técnica y social.

Gestión de la escorrentía

- Gestión de caudal, velocidad, dirección, volumen e infiltración.
- Recuperación del Balance Hídrico Natural.

Mejoramiento medioambiental de las cuencas hídricas.

Resultados

- Mayor accesibilidad al agua potable.
- Disminución en la dependencia del agua importada.
- Conservación de ecosistemas y servicios medioambientales relacionados con ríos y cuencas urbanas.
- Disminución de la huella hídrica urbana.
- Desarrollo de agricultura urbana y periurbana.
- Adaptación al cambio climático.
- Disminución de la vulnerabilidad ante eventos extremos como inviernos y sequías.
- Menor impacto ambiental por la construcción de infraestructuras de gestión.

Humedal construido CNCh, Ríonegro [Colombia]

CUS-TdeA

Humedal construido CNCh, Ríonegro [Colombia]

CUS-TdeA

Para la gestión de esta agua residual industrial, se diseñó una planta de tratamiento donde los humedales construidos de flujo subsuperficial son la parte final del tren de tratamiento. Una vez queda tratada, el agua es vertida a la fuente receptora: el río Ríonegro.

Durante la operación del sistema se han encontrado eficiencias de remoción del 90% en parámetros tales como DBO, grasas y aceites, sólidos suspendidos totales y pH, obteniendo un efluente final de alta calidad, que supera los valores definidos en la normatividad vigente en Colombia.

Humedales Barro Blanco y Roblemar, Antioquia [Colombia]

CUS-TdeA

Humedales Barro Blanco y Roblemar, Antioquia [Colombia]

CUS-TdeA

Optimización del sistema convencional existente para el tratamiento de aguas residuales domésticas, a partir de la implementación de tecnologías sostenibles: Humedales Construidos.

Los humedales construidos, en conjunto con el pretratamiento diseñado, ofrecen una eficiencia de remoción del 80% en los parámetros de DQO, demanda biológica de oxígeno DBO, color y SST, además de remover sustancialmente los metales contenidos, promoviendo de esta manera las condiciones necesarias para el reuso del agua.

Plan gestión sostenible, río Llobregat, Barcelona [España]

CUS

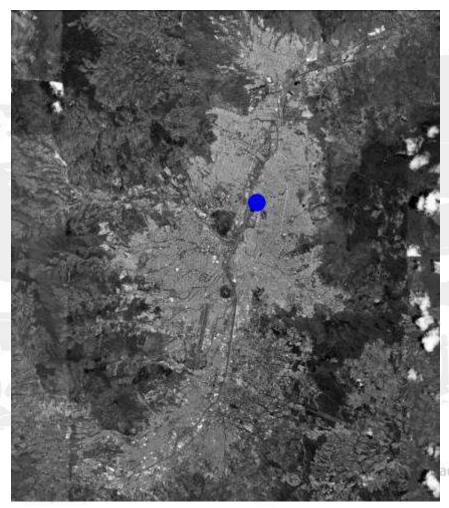
Plan gestión sostenible, río Llobregat, Barcelona [España]

CUS

El objetivo general del proyecto era recuperar el ecosistema fluvial del meandro y favorecer la interconexión biológica entre el Parque de Montserrat, el de Sant LLorenç de Munt y la Sierra de l'Obac.

Las actividades realizadas tuvieron como finalidad restaurar el bosque de rivera y la funcionalidad morfológica hidrodinámica del meandro y su entorno, potenciando su función como corredor biológico a través de la diversificación de los distintos tipos de hábitats existentes. La promoción del espacio para el uso pedagógico, de forma compatible con la preservación de los espacios naturales fomentó la participación local en el meandro.

Sostenibilidad Social



Localización: Medellín – Comuna 4.

ció k

Localización: Moravia.

10.000 hab.

(estratos 1)

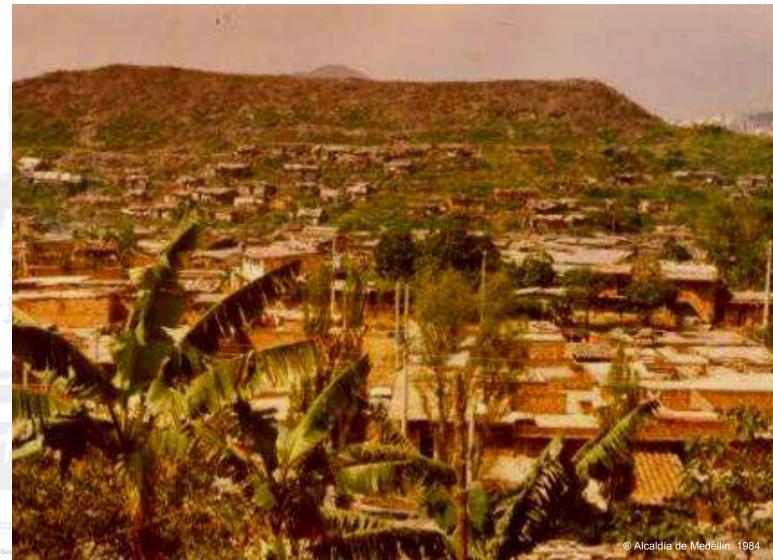
10 ha

100.000 hab/km²

- 42.000 hab. (estratos 1 y 2)
- 43,7 ha
- 96.110 hab/km²

Historia: depresión aluvial.

Historia: el basurero.



Historia: basurero clausurado.

17.000 hab.

22.000 (90's)

Historia: basurero consolidado.

2.224 familias

10 ha

35 m altura

1.500.000 toneladas desechos

Historia: reasentamiento.

Historia: recuperación ambiental.

Condiciones del hábitat: espacio urbano.

- Altas pendientes
- Construcciones precarias
- Suelo inestable
- Precariedad en los suministros de luz y agua
- Uso domestico de las emanaciones y bolsas de gases del botadero
- Ausencia de red de saneamiento
- Espacio público inexistente 0,28 m²/hab.

Condiciones del hábitat: residuos.

- Desechos
 - Industriales
 - Clínicos
 - Domésticos
- Lixiviados
- Gases tóxicos

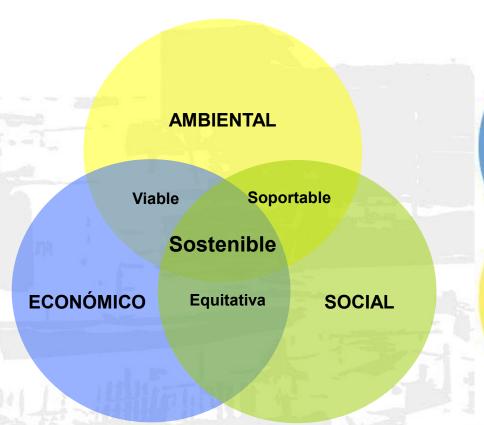
Condiciones del hábitat: tejido productivo.

- alta iniciativa empresarial
- endógeno y autosuficiente

Problemática: los lixiviados.

Intervención social.

Transformación sociambiental del Morro de Moravia.



Actores en el proceso de transformación.

Grupo UPC-TdeA: objetivo.

La mejora de las condiciones socio-económicas y ambientales de los habitantes de Moravia y su entorno, fortaleciendo el proceso participativo de transformación urbana y disminuyendo los riesgos para la salud pública mediante el uso de tecnologías sostenibles para la descontaminación y la gestión integral y sostenible del agua de las áreas contaminadas.

Grupo UPC-TdeA: líneas de trabajo.

Restauración ambiental del MORRO DE MORAVIA

Restauración paisajística del MORRO DE MORAVIA

Promoción de la PARTICIPACIÓN CIUDADANA

Comunicación y difusión del PROCESO MORAVIA

Trabajos de análisis de casos similares y propuestas de intervención.

1ª Semana de Moravia: talleres participativos con la comunidad.

Red de huertos urbanos de gestión municipal, Barcelona.

Jardines Comunitarios de Moravia.

Jardines Comunitarios de Moravia.

OBJETIVO

Vincular a los habitantes del barrio de Moravia en la **transformación paisajística y ambiental** del Morro a través de actividades de ocio entorno a la jardinería.

Promover la identidad territorial y la cohesión social a través de actividades participativas para la transformación ambiental y recuperación urbana del antiguo botadero.

Jardines Comunitarios: Función social.

- Mejorar la calidad de vida,
- fortalecer tejido de relaciones entre ellos y su entorno,
- recuperar contacto con El Morro perdido tras su reasentamiento en otra zona de Medellín- y
- reforzar la identidad y cohesión vecinal debilitada tras el programa de reasentamiento.

Jardines Comunitarios: Función paisajística.

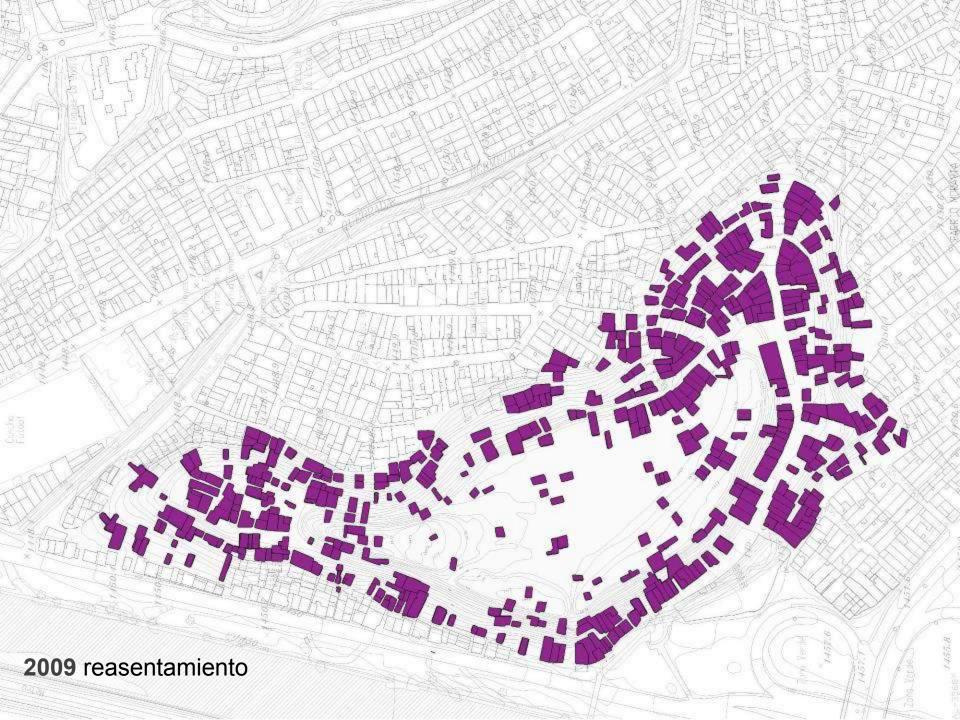
- recuperar El Morro de Moravia a través de elementos propios del lugar, como la flora y el reciclaje,
- transformar este
 espacio degradado en
 un referente del
 paisaje y cultura de
 la ciudad, como un
 nuevo cerro tutelar
 de Medellín.

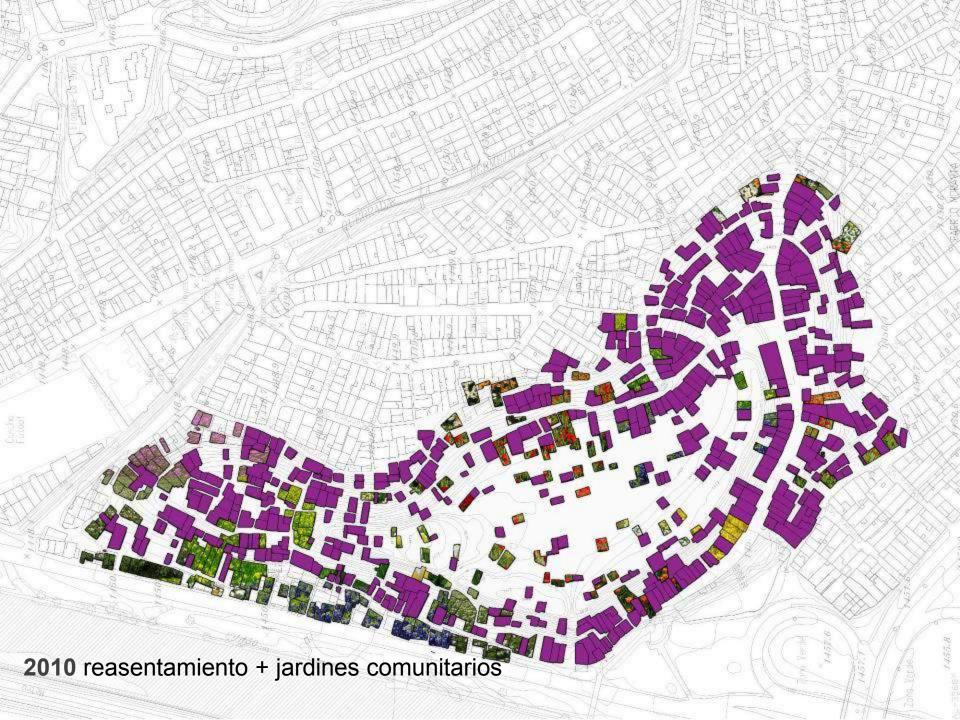
Jardines Comunitarios: Función ambiental.

- regenerar este
 espacio, víctima de
 un fuerte impacto
 ambiental, a través de
 actuaciones
 sostenibles y
 respetuosas con el
 entorno, y
- incorporar elementos naturales y de bioremediación, como motor de la recuperación ambiental.

Jardines Comunitarios: Función educativa.

- transmitir valores y principios básicos de igualdad, participación, colectividad y respeto por la naturaleza y
- formar a través de talleres de compostaje, reutilización, mejoras de cultivo y ciclo del agua.





Descontaminación: Planta piloto de tratamiento de lixiviados

Buffer Strips

franjas de vegetación para reducir la infiltración del agua de lluvia y retener parte de los contaminantes presentes en los lixiviados.

Humedales Construidos

paso del agua contaminada a través de un medio granular, donde vegetación y microorganismos realizan procesos naturales de depuración.

ció k

Descontaminación: Planta piloto de tratamiento de lixiviados

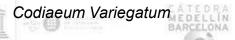
Descontaminación: Planta piloto de tratamiento de lixiviados

Grupo de Jardines Comunitarios de Moravia.

Grupo de Jardines Comunitarios de Moravia.

1^{er} Jardín Comunitario: antes y después

Especies sembradas.



Maní forrajero

Arachis pintoi

Crotos

Cheflera actinophylla

Palma carei Cordilyne terminalis

Coccinea morada Coccinea sp.

Dracaena tricolor Dracaenea marginata

ol-legi d'Arquitectes e Catalunya

de Antingula — Institución Universitaria

Jardines Identitarios de Moravia.

Jardines Identitarios de Moravia.

Grupo de Jardines Comunitarios de Moravia.

Actividad educativa: capacitación niños y niñas reasentados

Actividad social y paisajística: siembra jardín Centro de Salud

Actividad social y educativa: siembra Centro Educativo El Bosque

Actividad social y educativa: siembra Jardín Infantil "Mama Chila"

Actividad social y paisajística: siembra viviendas de reasentamiento

Actividad social y ambiental: vivero y compostador

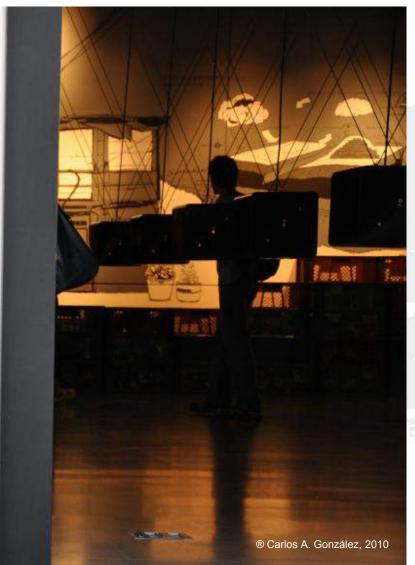
Actividad educativa y ambiental: viveros, planta piloto y TdeA

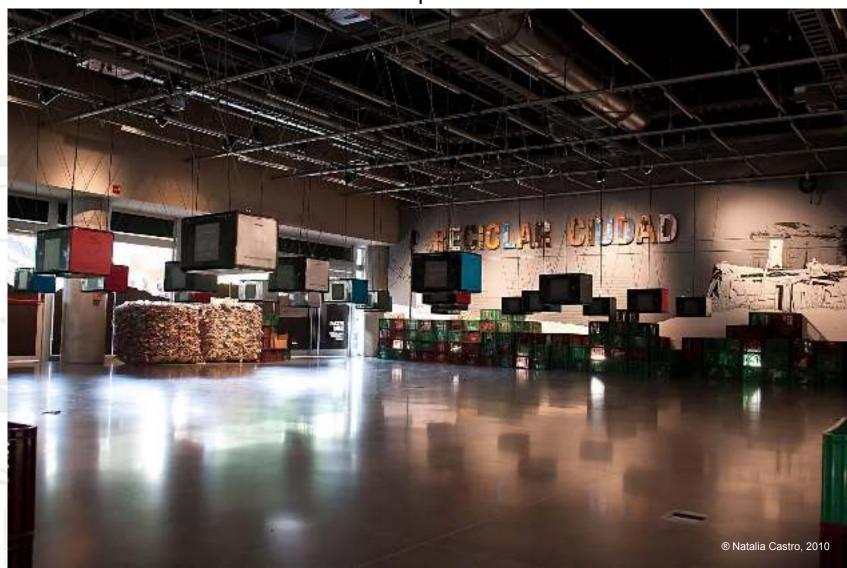
Actividad educativa y ambiental: visita Exposición Reciclar Ciudad

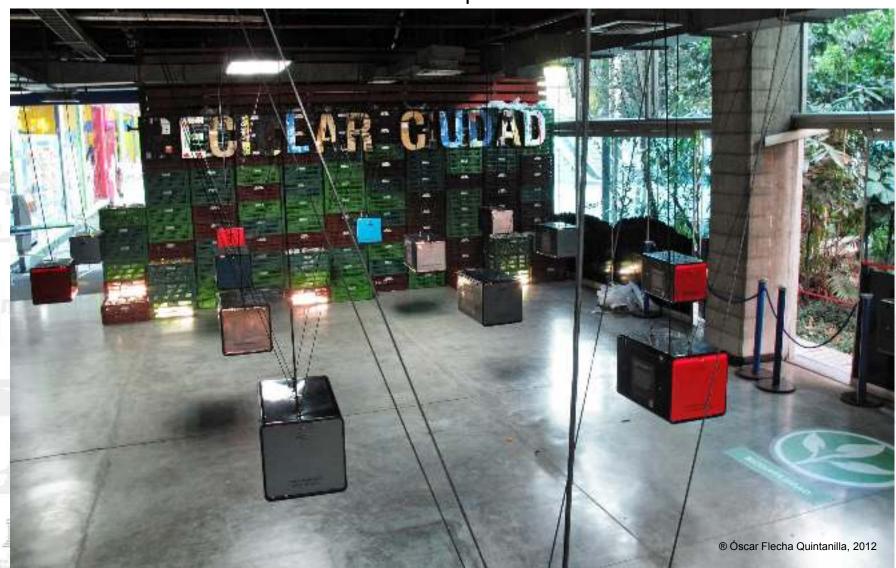
Actividad social y educativa: visita al MAMM, exposición Débora Arango

Acceso al mercado laboral

Acceso al mercado laboral







¡Muchas gracias!

Sostenibilidad y responsabilidad social en Iberoamérica

Medellín, Colombia

www.cus.upc.edu www.tdea.edu.co www.aquasost.com

