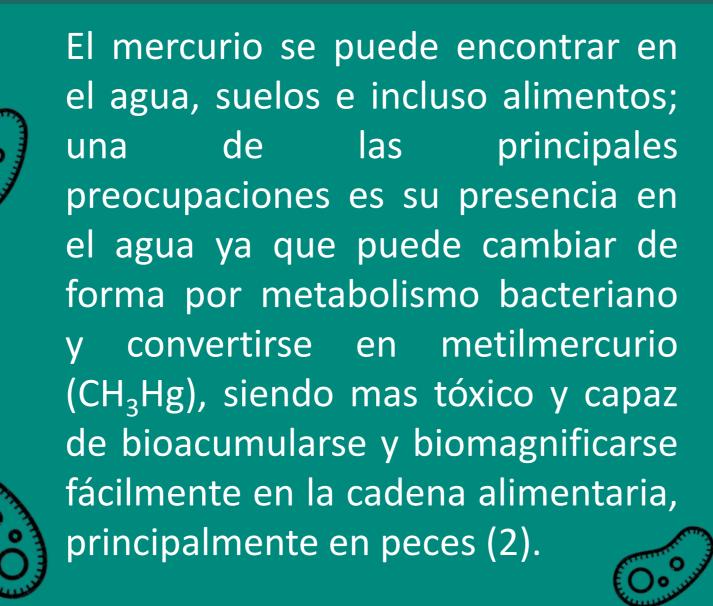


MICROORGANISMOS: ALGUNAS APLICACIONES

Pseudomonas spp.: Biorremediación de aguas

Francisco Javier Paternina Mercado¹, Susana Ochoa Agudelo ²

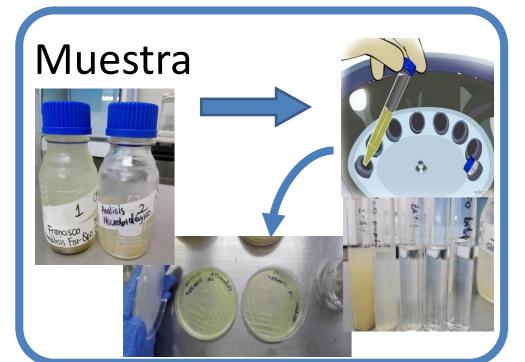

- 1. Estudiante de Bacteriología y Laboratorio Clínico. Semillero SIFACS. Facultad de Ciencias de la Salud. I.U. Colegio Mayor de Antioquia.
- 2. Docente Facultad Ciencias de la Salud. Grupo Investigación Biociencias. I.U. Colegio Mayor de Antioquia. Autor de correspondencia: franciscopaternina93@hotmail.com

INTRODUCCIÓN

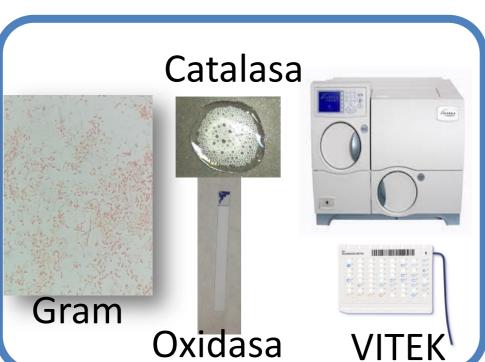
Contaminantes como hidrocarburos, pesticidas, herbicidas y metales pesados, incluyendo el Mercurio, son liberados y vertidos al medio ambiente por consecuencia de actividades industriales, mineras y agrícolas (1), lo que genera su incremento en el ambiente y lo convierte en riesgo tanto para animales como humanos trayendo consigo un posible problema de salud pública.

Una de las estrategias que han tomado importancia en las últimas décadas para disminuir la presencia de contaminantes en el ambiente es la **BIORREMEDIACIÓN**, que se caracteriza por usar microorganismos o enzimas para transformar o degradar contaminantes tóxicos en los ecosistemas (1).

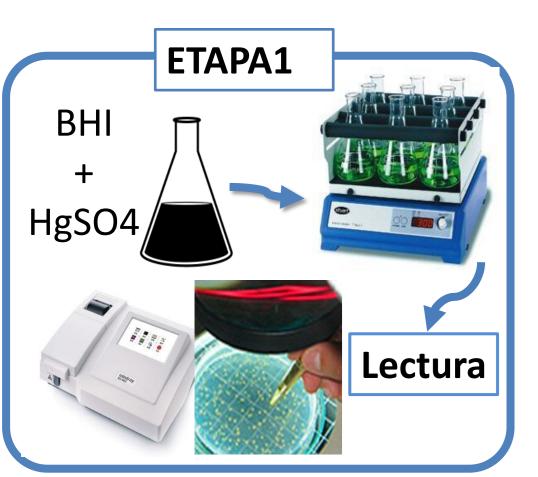
El presente estudio pretende evaluar la capacidad de crecimiento y tolerancia de *Pseudomonas* spp. frente al mercurio; se espera que se puedan evidenciar especies con mayor capacidad de crecer el presencia del metal, para demostrar los mecanismos de resistencia y biorremediación frente a dicha tolerancia.

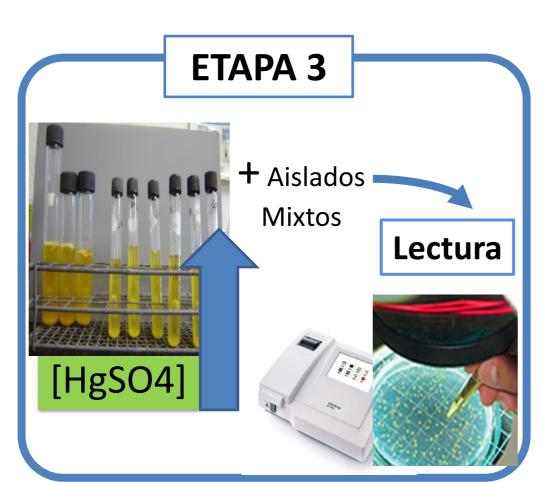

OBJETIVO

Evaluar la capacidad de *Pseudomonas* spp. nativas para crecer en medios de cultivo suplementados con mercurio.


MATERIALES Y MÉTODOS

AISLAMIENTO


IDENTIFICACIÓN


CARACTERIZACIÓN DEL AGUA

EXPOSICIÓN

ANÁLISIS QUÍMICO

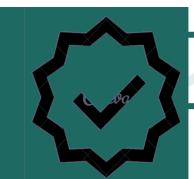
ANÁLISIS ESTADISTICO

REFERENCIAS

- 1. EPA/IRIS (2010) U.S. Environmental Protection Agency. Toxicological Review of Hexavalent Chromium. External Review Draft. Washington.
- 2. Gómez, A. (2005). *Interacción del mercurio con los componentes de las aguas residuales*. Manizales. Consultado de: http://www.bdigital.unal.edu.co/1125/1/angelicamariajimenezgomez.2005.pdf
- Paisio, C. E., Gonzalez, P. S., Talamo, M. A., & Angostini, E. (2012). Remediación biológica de Mercurio: Recientes avances. Revista Latinoamericana de Biotecnología Ambiental Y Algal, 3(2), 119–146. Retrieved from http://www.solabiaa.org/web/ARCHIVOS/documentos/relbaa/RELBAA_--V3N2.pdf

RESULTADOS PARCIALES

Número de Identificación	Especie Identificada	Morfología Macroscópica	Morfología microscópica	Catalasa	Oxidasa
1Ay	Achromobacter denitrificans (99%)	Colonia plana convexa, blanca transparentosa, opaca, de borde regular.	Bacilo Gram negativo	Positiva	Positiva
2Ay	Pseudomonas putida (99%)	Colonia plana de borde irregular con pigmento amarillo.	Bacilo Gram negativo	Positiva	Positiva
3Ay	Burkholderia cepacia o Pseudomonas cepacia (99%).	Colonia plana con pigmento amarillo de borde irregular.	Bacilo Gram negativo	Positiva	Positiva
4Ay	Pseudomonas mendocina (50%), Pseudomonas putida (50%).	Colonia plana transparente, de borde irregular.	Bacilo Gram negativo	Positiva	Positiva
5Ay	Pseudomonas fluorescens (34%), Pseudomonas aeruginosa (33%), Pseudomonas stutzeri (33%).	Colonia plana transparente, de borde irregular.	Bacilo Gram negativo	Positiva	Positiva
6Ay	Pseudomonas oleovorans (99%)	Colonia plana transparente, de borde irregular y transparenso.	Bacilo Gram negativo	Positiva	Positiva
1Ca	No identificado	Colonias plana, de borde irregular, traslucida con pigmento amarillo, mucoide.	Bacilo Gram negativo	Positiva	Positiva
2Ca	Pseudomonas fluorescens (50%), Pseudomonas aeruginiosa (50%).	Colonia convexa de borde definido con pigmento amarillo.	Bacilo Gram negativo	Positiva	Positiva
3Ca	Complejo Acinetobacter baumannii (50%), Pseudomonas aeruginosa (50%).	Colonia plana, de borde definido, traslucida, con pigmento amarillo.	Bacilo Gram negativo	Positiva	Positiva
4Ca	Aeromonas hydrophila /caviae (98%).	Colonia convexa de borde definido, blanca opaca.	Bacilo Gram negativo	Positiva	Positiva
5Ca	Pseudomonas fluorescens (51%), Pseudomonas putida (49%).	Colonia convexa traslucida con borde transparentoso.	Bacilo Gram negativo	Positiva	Positiva
6Ca	Pseudomonas putida (98%).	Colonia pequeña traslucida opaca de borde definido.	Bacilo Gram negativo	Positiva	Positiva


DISCUSIÓN

Pseudomonas reportadas con capacidad de crecer en presencia de mercurio (3)

Microorganismos	Compuesto	Referencia	
Pseudomonas, Psychrobacter	Hg orgánico e inorgánico	Pepi et al. (2011)	
P. balearica	MeHg	Lee et al. (2012)	
P. putida V1	MeHg	Cabral et al. (2012)	
P. fluorescens, Enterobacter cloacae, Citrobacter braakii y Alcaligenes faecalis	MeHg	Adelaja y Keenan (2012)	
Pseudomonas	Hg(II)	Wagner-Döbler (2003)	

CONCLUSIONES

Se confirma por morfología y pruebas bioquímicas analizadas, que en la Ciénaga de Ayapel y en el Rio Cauca (zona Caucasia) hay presencia de Pseudomonas spp.

